292 research outputs found

    Cylinder with Charged Anisotropic Source

    Full text link
    We take charged anisotropic fluid cylinder when there is no external pressure acting on the fluid. This is a cylindrical version of the Krori and Barua's method to explore the field equations with anisotropic fluid. We discuss models with positive matter density and pressure that satisfy all the energy and stability conditions. It is found that charge does not vanish at the center of the cylinder. The equilibrium condition as well as physical conditions are discussed. Further, we highlight the connection between our solutions and the charged strange quark stars as well as with dark matter including charged massive particles. The graphical analysis of the matter variables versus charge is given which indicates a physically reasonable matter distribution.Comment: 28 pages, 25 figures, accepted for publication in Can. J. Phys. arXiv admin note: some text overlap with arXiv:1004.2165 and arXiv:1007.188

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse

    Full text link
    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ\Gamma has smaller value for such a fluid in cylindrically symmetric than isotropic sphere

    Thermodynamic Properties of Spherically-Symmetric, Uniformly-Accelerated Reference Frames

    Get PDF
    We aim to study the thermodynamic properties of the spherically symmetric reference frames with uniform acceleration, including the spherically symmetric generalization of Rindler reference frame and the new kind of uniformly accelerated reference frame. We find that, unlike the general studies about the horizon thermodynamics, one cannot obtain the laws of thermodynamics for their horizons in the usual approaches, despite that one can formally define an area entropy (Bekenstein-Hawking entropy). In fact, the common horizon for a set of uniformly accelerated observers is not always exist, even though the Hawking-Unruh temperature is still well-defined. This result indicates that the Hawking-Unruh temperature is only a kinematic effect, to gain the laws of thermodynamics for the horizon, one needs the help of dynamics. Our result is in accordance with those from the various studies about the acoustic black holes.Comment: 8 page

    Gravitational Anomaly and Hawking Radiation of Brane World Black Holes

    Full text link
    We apply Wilczek and his collaborators' anomaly cancellation approach to the 3-dimensional Schwarzschild- and BTZ-like brane world black holes induced by the generalized C metrics in the Randall-Sundrum scenario. Based on the fact that the horizon of brane world black hole will extend into the bulk spacetime, we do the calculation from the bulk generalized C metrics side and show that this approach also reproduces the correct Hawking radiation for these brane world black holes. Besides, since this approach does not involve the dynamical equation, it also shows that the Hawking radiation is only a kinematic effect.Comment: 11 pages. v2: minor changes and references adde

    Three Kinds of Special Relativity via Inverse Wick Rotation

    Full text link
    Since the special relativity can be viewed as the physics in an inverse Wick rotation of 4-d Euclid space, which is at almost equal footing with the 4-d Riemann/Lobachevski space, there should be important physics in the inverse Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal footing, respectively. There is an instanton tunnelling scenario in the Riemann-de Sitter case that may explain why \La be positive and link with the multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression

    Full text link
    Many classical encoding algorithms of Vector Quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45sqrt(N) times approximately. In this paper, a hybrid quantum VQ encoding algorithm between classical method and quantum algorithm is presented. The number of its operations is less than sqrt(N) for most images, and it is more efficient than the pure quantum algorithm. Key Words: Vector Quantization, Grover's Algorithm, Image Compression, Quantum AlgorithmComment: Modify on June 21. 10pages, 3 figure

    Substrate Specificity and Plasticity of FERM-Containing Protein Tyrosine Phosphatases

    Get PDF
    SummaryEpidermal growth factor receptor (EGFR) pathway substrate 15 (Eps15) is a newly identified substrate for protein tyrosine phosphatase N3 (PTPN3), which belongs to the FERM-containing PTP subfamily comprising five members including PTPN3, N4, N13, N14, and N21. We solved the crystal structures of the PTPN3-Eps15 phosphopeptide complex and found that His812 of PTPN3 and Pro850 of Eps15 are responsible for the specific interaction between them. We defined the critical role of the additional residue Tyr676 of PTPN3, which is replaced by Ile939 in PTPN14, in recognition of tyrosine phosphorylated Eps15. The WPD loop necessary for catalysis is present in all members but not PTPN21. We identified that Glu instead of Asp in the WPE loop contributes to the catalytic incapability of PTPN21 due to an extended distance beyond protonation targeting a phosphotyrosine substrate. Together with in vivo validations, our results provide novel insights into the substrate specificity and plasticity of FERM-containing PTPs
    • …
    corecore