26 research outputs found

    Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins

    Get PDF
    In the pharmaceutical industry, improving the early detection of drug-induced hepatotoxicity is essential as it is one of the most important reasons for attrition of candidate drugs during the later stages of drug development. The first objective of this study was to better characterize different cellular models (i.e., HepG2, HepaRG cells, and fresh primary human hepatocytes) at the gene expression level and analyze their metabolic cytochrome P450 capabilities. The cellular models were exposed to three different CYP450 inducers; beta-naphthoflavone (BNF), phenobarbital (PB), and rifampicin (RIF). HepG2 cells responded very weakly to the different inducers at the gene expression level, and this translated generally into low CYP450 activities in the induced cells compared with the control cells. On the contrary, HepaRG cells and the three human donors were inducible after exposure to BNF, PB, and RIF according to gene expression responses and CYP450 activities. Consequently, HepaRG cells could be used in screening as a substitute and/or in complement to primary hepatocytes for CYP induction studies. The second objective was to investigate the predictivity of the different cellular models to detect hepatotoxins (16 hepatotoxic and 5 nonhepatotoxic compounds). Specificity was 100% with the different cellular models tested. Cryopreserved human hepatocytes gave the highest sensitivity, ranging from 31% to 44% (depending on the donor), followed by lower sensitivity (13%) for HepaRG and HepG2 cells (6.3%). Overall, none of the models under study gave desirable sensitivities (80–100%). Consequently, a high metabolic capacity and CYP inducibility in cell lines does not necessarily correlate with a high sensitivity for the detection of hepatotoxic drugs. Further investigations are necessary to compare different cellular models and determine those that are best suited for the detection of hepatotoxic compounds

    Cell Handling, Membrane-Binding Properties, And Membrane-Penetration Modeling Approaches Of Pivampicillin And Phthalimidomethylampicillin, Two Basic Esters Of Ampicillin, In Comparison With Chloroquine And Azithromycin

    Full text link
    PURPOSE: The purpose of this work was to examine and understand the cellular pharmacokinetics of two basic esters of ampicillin, pivaloyloxymethyl (PIVA) and phthalimidomethyl (PIMA), in comparison with lysosomotropic drugs (chloroquine, azithromycin). METHODS: Cell culture studies (J774 macrophages) were undertaken to study uptake and release kinetics and to assess the influence of concentration, pH, proton ionophore (monensin), and MRP and P-gp inhibitors (probenecid, gemfibrozil, cyclosporin A, GF 120918). Equilibrium dialysis with liposomes were performed to directly asses the extent of drug binding to bilayers. Conformational analysis modeling of the drug penetration in bilayers was conducted to rationalize the experimental observations. RESULTS: PIVA and PIMA showed properties in almost complete contrast with those of chloroquine and azithromycin, i.e., fast apparent accumulation and fast release at 4 degrees C as well as at 37 degrees C, saturation of uptake (apparent Kd 40 microM), no influence of monensin, MRP, or P-gp inhibitors; tight binding to liposomes (Kd approx. 40 microM); and sharp increase in calculated free energy when forced in the hydrophobic domain. CONCLUSIONS: Although they are weak organic bases, PIVA and PIMA show none of the properties of lysosomotropic agents. We hypothesize that they remain locked onto the pericellular membrane and may never penetrate cells as such in significant amounts

    Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats

    No full text
    BACKGROUND—Saccharomyces boulardii is a non-pathogenic yeast which exerts trophic effects on human and rat small intestinal mucosa.‹AIMS—To examine the effects of S boulardii on ileal adaptation after proximal enterectomy in rats.‹METHODS—Wistar rats, aged eight weeks, underwent 60% proximal resection or transection and received by orogastric intubation either 1 mg/g body wt per day lyophilised S boulardii or the vehicle for seven days. The effects on ileal mucosal adaptation were assessed eight days after surgery.‹RESULTS—Compared with transection, resection resulted in mucosal hyperplasia with significant decreases in the specific and total activities of sucrase, lactase, and maltase. Treatment of resected animals with S boulardii had no effect on mucosal hyperplasia but did upgrade disaccharidase activities to the levels of the transected group. Enzyme stimulation by S boulardii was associated with significant increases in diamine oxidase activity and mucosal polyamine concentrations. Likewise, sodium dependent D-glucose uptake by brush border membrane vesicles, measured as a function of time and glucose concentration in the incubation medium, was significantly (p<0.05) increased by 81% and three times respectively in the resected group treated with S boulardii. In agreement with this, expression of the sodium/glucose cotransporter-1 in brush border membranes of resected rats treated with S boulardii was enhanced twofold compared with resected controls.‹CONCLUSION—Oral administration of S boulardii soon after proximal enterectomy improves functional adaptation of the remnant ileum.‹‹‹Keywords: Saccharomyces boulardii; intestine; adaptation; polyamines; brush border membrane enzymes; glucose uptak

    Effect of Gemfibrozil on the Metabolism of Brivaracetam In Vitro and in Human Subjects

    No full text
    corecore