90 research outputs found

    Polarons as stable solitary wave solutions to the Dirac-Coulomb system

    Full text link
    We consider solitary wave solutions to the Dirac--Coulomb system both from physical and mathematical points of view. Fermions interacting with gravity in the Newtonian limit are described by the model of Dirac fermions with the Coulomb attraction. This model also appears in certain condensed matter systems with emergent Dirac fermions interacting via optical phonons. In this model, the classical soliton solutions of equations of motion describe the physical objects that may be called polarons, in analogy to the solutions of the Choquard equation. We develop analytical methods for the Dirac--Coulomb system, showing that the no-node gap solitons for sufficiently small values of charge are linearly (spectrally) stable.Comment: Latex, 26 page

    A survey on deep learning techniques for Stereo-based depth estimation

    No full text
    Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted a growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this paper, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research

    Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users

    No full text
    Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of challenging problems. However, since deep learning methods operate as black boxes, the uncertainty associated with their predictions is often challenging to quantify. Bayesian statistics offer a formalism to understand and quantify the uncertainty associated with deep neural network predictions. This tutorial provides deep learning practitioners with an overview of the relevant literature and a complete toolset to design, implement, train, use and evaluate Bayesian neural networks, i . e ., stochastic artificial neural networks trained using Bayesian methods

    Lymphangite sclérosante de la verge

    No full text

    Atrous convolutional feature network for weakly supervised semantic segmentation

    No full text
    Weakly supervised semantic segmentation has been attracting increasing attention as it can alleviate the need for expensive pixel-level annotations through the use of image-level labels. Relevant methods mainly rely on the implicit object localization ability of convolutional neural networks (CNNs). However, generated object attention maps remain mostly small and incomplete. In this paper, we propose an Atrous Convolutional Feature Network (ACFN) to generate dense object attention maps. This is achieved by enhancing the context representation of image classification CNNs. More specifically, cascaded atrous convolutions are used in the middle layers to retain sufficient spatial details, and pyramidal atrous convolutions are used in the last convolutional layers to provide multi-scale context information for the extraction of object attention maps. Moreover, we propose an attentive fusion strategy to adaptively fuse the multi-scale features. Our method shows improvements over existing methods on both the PASCAL VOC 2012 and MS COCO datasets, achieving state-of-the-art performance

    Learning latent global network for Skeleton-based action prediction

    No full text
    Human actions represented with 3D skeleton sequences are robust to clustered backgrounds and illumination changes. In this paper, we investigate skeleton-based action prediction, which aims to recognize an action from a partial skeleton sequence that contains incomplete action information. We propose a new Latent Global Network based on adversarial learning for action prediction. We demonstrate that the proposed network provides latent long-term global information that is complementary to the local action information of the partial sequences and helps improve action prediction. We show that action prediction can be improved by combining the latent global information with the local action information. We test the proposed method on three challenging skeleton datasets and report state-of-the-art performance
    • …
    corecore