1,351 research outputs found

    Eigentum

    Get PDF

    Pseudocontact shifts and paramagnetic susceptibility in semiempirical and quantum chemistry theories

    Full text link
    Pseudocontact shifts are traditionally described as a function of the anisotropy of the paramagnetic susceptibility tensor, according to the semiempirical theory mainly developed by Kurland and McGarvey (R.J. Kurland and B.R. McGarvey, J. Magn. Reson. 2, 286 (1970)). The paramagnetic susceptibility tensor is required to be symmetric. Applying point-dipole approximation to the quantum chemistry theory of hyperfine shift, pseudocontact shifts are found to scale with a non-symmetric tensor that differs by a factor g/ge from the paramagnetic susceptibility tensor derived within the semiempirical framework. We analyze the foundations of the Kurland-McGarvey pseudocontact shift expression and recall that it is inherently based on the Russell-Saunders (LS) coupling approximation for the spin-orbit coupling. We show that the difference between the semiempirical and quantum chemistry pseudocontact shift expressions arises directly from the different treatment of the orbital contribution to the hyperfine coupling

    A logic road from special relativity to general relativity

    Full text link
    We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist

    Techniques for measuring weight bearing during standing and walking

    Get PDF
    OBJECTIVE: To classify and assess techniques for measuring the amount of weight bearing during standing and walking.BACKGROUND: A large variety of weight bearing measuring techniques exists. This review describes their advantages and limitations to assist clinicians and researchers in selecting a technique for their specific application in measuring weight bearing.METHODS: A literature search was performed in Pubmed-Medline, CINAHL, and EMBASE. Measurement techniques were classified in 'clinical examination', 'scales', 'biofeedback systems', 'ambulatory devices' and 'platforms', and assessed on aspects of methodological quality, application, and feasibility.RESULTS: A total of 68 related articles was evaluated. The clinical examination technique is a crude method to estimate the amount of weight bearing. Scales are useful for static measurements to evaluate symmetry in weight bearing. Biofeedback systems give more reliable, accurate and objective data on weight bearing compared to clinical examination and scales, but the high costs could limit their use in physical therapy departments. The ambulatory devices can measure weight bearing with good accuracy and reliability in the hospital and at home. Platforms have the best methodological quality, but are mostly restricted to a gait laboratory, need trained personnel, and are expensive.CONCLUSIONS: The choice of a technique largely depends upon the criteria discussed in this review; however the clinical utilisation, the research question posed, and the available budget also play a role. The new developments seen in the field of 'ambulatory devices' are aimed at extending measuring time, and improved practicality in data collection and data analysis. For these latter devices, however, mainly preliminary studies have been published about devices that are not (yet) commercially available.</p

    Photoionization of H<sub>2</sub> using the molecular R-matrix with time approach

    Get PDF
    We present results of the first calculations using the variational ab initio molecular R-matrix with time approach. We have calculated two and four-photon ionization cross sections for H2 and studied the effects of electron correlation and choice of the Gaussian atomic basis sets. Our results are compared with earlier calculations

    Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices

    Full text link
    Given a sequence (Mn,Qn)n1(M_{n},Q_{n})_{n\ge 1} of i.i.d.\ random variables with generic copy (M,Q)GL(d,R)×Rd(M,Q) \in GL(d, \R) \times \R^d, we consider the random difference equation (RDE) Rn=MnRn1+Qn, R_{n}=M_{n}R_{n-1}+Q_{n}, n1n\ge 1, and assume the existence of κ>0\kappa >0 such that \lim_{n \to \infty}(\E{\norm{M_1 ... M_n}^\kappa})^{\frac{1}{n}} = 1 . We prove, under suitable assumptions, that the sequence Sn=R1+...+RnS_n = R_1 + ... + R_n, appropriately normalized, converges in law to a multidimensional stable distribution with index κ\kappa. As a by-product, we show that the unique stationary solution RR of the RDE is regularly varying with index κ\kappa, and give a precise description of its tail measure. This extends the prior work http://arxiv.org/abs/1009.1728v3 .Comment: 15 page

    A Geometrical Characterization of the Twin Paradox and its Variants

    Full text link
    The aim of this paper is to provide a logic-based conceptual analysis of the twin paradox (TwP) theorem within a first-order logic framework. A geometrical characterization of TwP and its variants is given. It is shown that TwP is not logically equivalent to the assumption of the slowing down of moving clocks, and the lack of TwP is not logically equivalent to the Newtonian assumption of absolute time. The logical connection between TwP and a symmetry axiom of special relativity is also studied.Comment: 22 pages, 3 figure

    Electron correlation and short-range dynamics in attosecond angular streaking

    Get PDF
    We employ the R matrix with time-dependence method to study attosecond angular streaking of F−. Using this negative ion, free of long-range Coulomb interactions, we elucidate the role of short-range electron correlation effects in an attoclock scheme. Through solution of the multielectron time-dependent Schrödinger equation, we aim to bridge the gap between experiments using multielectron targets, and one-electron theoretical approaches. We observe significant negative offset angles in the photoelectron momentum distributions, despite the short-range nature of the binding potential. We show that the offset angle is sensitive to the atomic structure description of the residual F atom. We also investigate the response of co- and counter-rotating electrons, and observe an angular separation in their emissio

    Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Get PDF
    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in which in-stream habitat for most life stages has a consistently positive response to fire. This compares to the historic distribution of spring Chinook, in which in-stream habitat exhibited a variable response to fire, including decreases in habitat quality overall or for specific life stages. This suggests that as the distribution of spring Chinook has decreased, they now occupy those areas with the most positive potential response to fire. Our work shows the potentially positive link between wildfire and aquatic habitat that supports forest managers in setting broader goals for fire management, perhaps leading to less fire suppression in some situations
    corecore