700 research outputs found
Global Seismic Oscillations in Soft Gamma Repeaters
There is evidence that soft gamma repeaters (SGRs) are neutron stars which
experience frequent starquakes, possibly driven by an evolving, ultra-strong
magnetic field. The empirical power-law distribution of SGR burst energies,
analogous to the Gutenberg-Richter law for earthquakes, exhibits a turn-over at
high energies consistent with a global limit on the crust fracture size. With
such large starquakes occurring, the significant excitation of global seismic
oscillations (GSOs) seems likely. Moreover, GSOs may be self-exciting in a
stellar crust that is strained by many, randomly-oriented stresses. We explain
why low-order toroidal modes, which preserve the shape of the star and have
observable frequencies as low as ~ 30 Hz, may be especially susceptible to
excitation. We estimate the eigenfrequencies as a function of stellar mass and
radius, and their magnetic and rotational shiftings/splittings. We also
describes ways in which these modes might be detected and damped. There is
marginal evidence for 23 ms oscillations in the hard initial pulse of the 1979
March 5th event. This could be due to the mode in a neutron star with B
~ 10^{14} G or less; or it could be the fundamental toroidal mode if the field
in the deep crust of SGR 0526-66 is ~ 4 X 10^{15} G, in agreement with other
evidence. If confirmed, GSOs would give corroborating evidence for
crust-fracturing magnetic fields in SGRs: B >~ 10^{14} G.Comment: 12 pages, AASTeX, no figures. Accepted for Astrophysical Journal
Letter
Librarians’ Civic Roles and Responsibilities: Issues in Information Crises and Information Disorders
Objective. Public libraries can be powerful advocates for civic engagement. They have a responsibility to rekindle civil society and educate and inform the public. Libraries must expand their role beyond physical and virtual space to promote civic practices in fighting fake news. Libraries can use their influence to help students and librarians identify misinformation and caution others against sharing it. This paper aims to introduce how librarians can activate their civic roles and define information disorders. Methods. Public librarians were interviewed using discourse analysis to identify the profession's information challenges and understand their civic roles. Results. Public librarians identified a variety of ways to perform their civic roles, and several constructs emerged in the definition of information disorders. Conclusions. This pilot study offers a glimpse into how public librarians interact with information and filter misinformation circulating on social media. Civic librarianship is evident, but librarians face professional challenges. Although this study focuses on public librarians, the authors believe that many aspects can be accustomed by all types of librarians
Design of metallic nanoparticles gratings for filtering properties in the visible spectrum
Plasmonic resonances in metallic nanoparticles are exploited to create
efficient optical filtering functions. A Finite Element Method is used to model
metallic nanoparticles gratings. The accuracy of this method is shown by
comparing numerical results with measurements on a two-dimensional grating of
gold nanocylinders with elliptic cross section. Then a parametric analysis is
performed in order to design efficient filters with polarization dependent
properties together with high transparency over the visible range. The behavior
of nanoparticle gratings is also modelled using the Maxwell-Garnett
homogenization theory and analyzed by comparison with the diffraction by a
single nanoparticle. The proposed structures are intended to be included in
optical systems which could find innovative applications.Comment: submitted to Applied Optic
Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster
The scaling properties of self-avoiding walks on a d-dimensional diluted
lattice at the percolation threshold are analyzed by a field-theoretical
renormalization group approach. To this end we reconsider the model of Y. Meir
and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via
renormalization its multifractal properties are directly accessible. While the
former first order perturbation did not agree with the results of other
methods, we find that the asymptotic behavior of a self-avoiding walk on the
percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 +
110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric
description of the available MC and exact enumeration data in a wide range of
dimensions 2<=d<=6.Comment: 4 pages, 2 figure
Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect
The plastic deformation of dilute alloys is often accompanied by plastic
instabilities due to dynamic strain aging and dislocation interaction. The
repeated breakaway of dislocations from and their recapture by solute atoms
leads to stress serrations and localized strain in the strain controlled
tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present
work, we analyse the stress time series data of the observed PLC effect in the
constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of
strain rates at room temperature. The scaling behaviour of the PLC effect was
studied using two complementary scaling analysis methods: the finite variance
scaling method and the diffusion entropy analysis. From these analyses we could
establish that in the entire span of strain rates, PLC effect showed Levy walk
property. Moreover, the multiscale entropy analysis is carried out on the
stress time series data observed during the PLC effect to quantify the
complexity of the distinct spatiotemporal dynamical regimes. It is shown that
for the static type C band, the entropy is very low for all the scales compared
to the hopping type B and the propagating type A bands. The results are
interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure
Swelling-collapse transition of self-attracting walks
We study the structural properties of self-attracting walks in d dimensions
using scaling arguments and Monte Carlo simulations. We find evidence for a
transition analogous to the \Theta transition of polymers. Above a critical
attractive interaction u_c, the walk collapses and the exponents \nu and k,
characterising the scaling with time t of the mean square end-to-end distance
~ t^{2 \nu} and the average number of visited sites ~ t^k, are
universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells
and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for
d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different
universality class.Comment: 6 pages, 5 postscript figure
Scaling behavior of self-avoiding walks on percolation clusters
The scaling behavior of self-avoiding walks (SAWs) on the backbone of
percolation clusters in two, three and four dimensions is studied by Monte
Carlo simulations. We apply the pruned-enriched Rosenbluth chain-growth method
(PERM). Our numerical results bring about the estimates of critical exponents,
governing the scaling laws of disorder averages of the end-to-end distance of
SAW configurations. The effects of finite-size scaling are discussed as well.Comment: 6 page
Quenched Averages for self-avoiding walks and polygons on deterministic fractals
We study rooted self avoiding polygons and self avoiding walks on
deterministic fractal lattices of finite ramification index. Different sites on
such lattices are not equivalent, and the number of rooted open walks W_n(S),
and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We
use exact recursion equations on the fractal to determine the generating
functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These
are used to compute the averages and over different positions of S. We find that the connectivity constant
, and the radius of gyration exponent are the same for the annealed
and quenched averages. However, , and , where the exponents
and take values different from the annealed case. These
are expressed as the Lyapunov exponents of random product of finite-dimensional
matrices. For the 3-simplex lattice, our numerical estimation gives ; and , to be
compared with the annealed values and .Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
The observational legacy of preon stars - probing new physics beyond the LHC
We discuss possible ways to observationally detect the superdense cosmic
objects composed of hypothetical sub-constituent fermions beneath the
quark/lepton level, recently proposed by us. The characteristic mass and size
of such objects depend on the compositeness scale, and their huge density
cannot arise within a context of quarks and leptons alone. Their eventual
observation would therefore be a direct vindication of physics beyond the
standard model of particle physics, possibly far beyond the reach of the Large
Hadron Collider (LHC), in a relatively simple and inexpensive manner. If relic
objects of this type exist, they can possibly be detected by present and future
x-ray observatories, high-frequency gravitational wave detectors, and
seismological detectors. To have a realistic detection rate, i.e., to be
observable, they must necessarily constitute a significant fraction of cold
dark matter.Comment: 8 pages, 4 figures. Added one reference [24]. Reformulated the
discussion at the end of Section II. Accepted for publication in Phys. Rev.
Phase transitions and noise crosscorrelations in a model of directed polymers in a disordered medium
We show that effective interactions mediated by disorder between two directed
polymers can be modelled as the crosscorrelation of noises in the
Kardar-Parisi-Zhang (KPZ) equations satisfied by the respective free energies
of these polymers. When there are two polymers, disorder introduces attractive
interactions between them. We analyze the phase diagram in details and show
that these interactions lead to new phases in the phase diagram. We show that,
even in dimension , the two directed polymers see the attraction only if
the strength of the disorder potential exceeds a threshold value. We extend our
calculations to show that if there are polymers in the system then -body
interactions are generated in the disorder averaged effective free energy.Comment: To appear in Phys. Rev. E(2000
- …