7,500 research outputs found
Experimental Divertor Similarity Database Parameters
A set of experimentally-determined dimensionless parameters is proposed for
characterizing the regime of divertor operation. The objective is to be able to
compare as unambiguously as possible the operation of different divertors and
to understand what physical similarities and differences they represent.
Examples from Alcator C-Mod are given.Comment: Plain Tex (8 pages) plus 5 postscipt figure
Non-linear Plasma Wake Growth of Electron Holes
An object's wake in a plasma with small Debye length that drifts
\emph{across} the magnetic field is subject to electrostatic electron
instabilities. Such situations include, for example, the moon in the solar wind
wake and probes in magnetized laboratory plasmas. The instability drive
mechanism can equivalently be considered drift down the potential-energy
gradient or drift up the density-gradient. The gradients arise because the
plasma wake has a region of depressed density and electrostatic potential into
which ions are attracted along the field. The non-linear consequences of the
instability are analysed in this paper. At physical ratios of electron to ion
mass, neither linear nor quasilinear treatment can explain the observation of
large-amplitude perturbations that disrupt the ion streams well before they
become ion-ion unstable. We show here, however, that electron holes, once
formed, continue to grow, driven by the drift mechanism, and if they remain in
the wake may reach a maximum non-linearly stable size, beyond which their
uncontrolled growth disrupts the ions. The hole growth calculations provide a
quantitative prediction of hole profile and size evolution. Hole growth appears
to explain the observations of recent particle-in-cell simulations
Collisional Effects on Nonlinear Ion Drag Force for Small Grains
The ion drag force arising from plasma flow past an embedded spherical grain
is calculated self-consistently and non-linearly using particle in cell codes,
accounting for ion-neutral collisions. Using ion velocity distribution
appropriate for ion drift driven by a force field gives wake potential and
force greatly different from a shifted Maxwellian distribution, regardless of
collisionality. The low-collisionality forces are shown to be consistent with
estimates based upon cross-sections for scattering in a Yukawa (shielded) grain
field, but only if non-linear shielding length is used. Finite collisionality
initially enhances the drag force, but only by up to a factor of 2. Larger
collisionality eventually reduces the drag force. In the collisional regime,
the drift distribution gives larger drag than the shift distribution even at
velocities where their collisionless drags are equal. Comprehensive practical
analytic formulas for force that fit the calculations are provided.Comment: Fig 1. corrected in this versio
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Modulation Theory and Systems
Contains research objectives and reports on three research projects
NcPred for accurate nuclear protein prediction using n-mer statistics with various classification algorithms
Prediction of nuclear proteins is one of the major challenges in genome annotation. A method, NcPred is described, for predicting nuclear proteins with higher accuracy exploiting n-mer statistics with different classification algorithms namely Alternating Decision (AD) Tree, Best First (BF) Tree, Random Tree and Adaptive (Ada) Boost. On BaCello dataset [1], NcPred improves about 20% accuracy with Random Tree and about 10% sensitivity with Ada Boost for Animal proteins compared to existing techniques. It also increases the accuracy of Fungal protein prediction by 20% and recall by 4% with AD Tree. In case of Human protein, the accuracy is improved by about 25% and sensitivity about 10% with BF Tree. Performance analysis of NcPred clearly demonstrates its suitability over the contemporary in-silico nuclear protein classification research
Evidence for Accretion in the High-resolution X-ray Spectrum of the T Tauri Star System Hen 3-600
We present high-resolution X-ray spectra of the multiple T Tauri star system
Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on
the Chandra X-ray Observatory. Two binary components were detected in the
zeroth-order image. Hen 3-600-A, which has a large mid-infrared excess, is a
2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The
dispersed X-ray spectra of the two primary components overlap spatially;
spectral analysis was performed on the combined system. Analysis of the
individual spectra was limited to regions where the contributions of A and B
can be disentangled. This analysis results in two lines of evidence indicating
that the X-ray emission from Hen 3-600 is derived from accretion processes:
line ratios of O VII indicate that the characteristic density of its
X-ray-emitting plasma is large; a significant component of low-temperature
plasma is present and is stronger in component A. These results are consistent
with results obtained from X-ray gratings spectroscopy of more rapidly
accreting systems. All of the signatures of Hen 3-600 that are potential
diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha
emission, and weak infrared excess -- suggest that its components represent a
transition phase between rapidly accreting, classical T Tauri stars and
non-accreting, weak-lined T Tauri stars.Comment: latex, 27 pages, 12 figures, 6 tables; accepted by Ap
Bivariate -distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems
Interacting many-particle systems with a mean-field one body part plus a
chaos generating random two-body interaction having strength , exhibit
Poisson to GOE and Breit-Wigner (BW) to Gaussian transitions in level
fluctuations and strength functions with transition points marked by
and , respectively; . For these systems theory for matrix elements of one-body transition
operators is available, as valid in the Gaussian domain, with , in terms of orbitals occupation numbers, level densities and an
integral involving a bivariate Gaussian in the initial and final energies. Here
we show that, using bivariate -distribution, the theory extends below from
the Gaussian regime to the BW regime up to . This is well
tested in numerical calculations for six spinless fermions in twelve single
particle states.Comment: 7 pages, 2 figure
- …