10,657 research outputs found

    Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation

    Get PDF
    By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.Comment: 11 page

    Darwin-Lagrangian Analysis for the Interaction of a Point Charge and a Magnet: Considerations Related to the Controversy Regarding the Aharonov-Bohm and Aharonov-Casher Phase Shifts

    Full text link
    The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin Lagrangian is used to analyze the electromagnetic behavior of the model magnetic moment (composed of two oppositely charged particles of different mass in an initially circular orbit) interacting with a passing point charge. The changing mangetic moment is found to put a force back on a passing charge; this force is of order 1/c^2 and depends upon the magnitude of the magnetic moment. It is suggested that in the limit of a multiparticle magnetic toroid, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields penetrate into the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. Conservation laws are discussed. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle, and Vaidman.Comment: 33 page

    The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift

    Full text link
    The classical electromagnetic lag assocated with the Aharonov-Bohm phase shift is obtained by using a Darwin-Lagrangian analysis similar to that given by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James paradox. The classical forces cause changes in particle velocities and so produce a relative lag leading to the same phase shift as predicted by Aharonov and Bohm and observed in experiments. An experiment is proposed to test for this lag aspect implied by the classical analysis but not present in the currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure

    Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect

    Full text link
    The formulae for Planck length, Hawking temperature and Unruh-Davies temperature are derived by using only laws of classical physics together with the Heisenberg principle. Besides, it is shown how the Hawking relation can be deduced from the Unruh relation by means of the principle of equivalence; the deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure

    Generating anisotropic fluids from vacuum Ernst equations

    Get PDF
    Starting with any stationary axisymmetric vacuum metric, we build anisotropic fluids. With the help of the Ernst method, the basic equations are derived together with the expression for the energy-momentum tensor and with the equation of state compatible with the field equations. The method is presented by using different coordinate systems: the cylindrical coordinates ρ,z\rho, z and the oblate spheroidal ones. A class of interior solutions matching with stationary axisymmetric asymptotically flat vacuum solutions is found in oblate spheroidal coordinates. The solutions presented satisfy the three energy conditions.Comment: Version published on IJMPD, title changed by the revie

    Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force

    Full text link
    We study the modification by the presence of a plane wall of energy level shifts of two-level atoms which are in multipolar coupling with quantized electromagnetic fields in a thermal bath in a formalism which separates the contributions of thermal fluctuations and radiation reaction and allows a distinct treatment to atoms in the ground and excited states. The position dependent energy shifts give rise to an induced force acting on the atoms. We are able to identify three different regimes where the force shows distinct features and examine, in all regimes, the behaviors of this force in both the low temperature limit and the high temperature limit for both the ground state and excited state atoms, thus providing some physical insights into the atom-wall interaction at finite temperature. In particular, we show that both the magnitude and the direction of the force acting on an atom may have a clear dependence on atomic the polarization directions. In certain cases, a change of relative ratio of polarizations in different directions may result in a change of direction of the force.Comment: 29 pages, 3 figure

    Casimir Energy of a Spherical Shell

    Get PDF
    The Casimir energy for a conducting spherical shell of radius aa is computed using a direct mode summation approach. An essential ingredient is the implementation of a recently proposed method based on Cauchy's theorem for an evaluation of the eigenfrequencies of the system. It is shown, however, that this earlier calculation uses an improper set of modes to describe the waves exterior to the sphere. Upon making the necessary corrections and taking care to ensure that no mathematically ill-defined expressions occur, the technique is shown to leave numerical results unaltered while avoiding a longstanding criticism raised against earlier calculations of the Casimir energy.Comment: LaTeX, 14 pages, 1 figur

    Spinning BTZ Black Hole versus Kerr Black Hole : A Closer Look

    Get PDF
    By applying Newman's algorithm, the AdS_3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Banados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in a kind of an ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, next, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such transformation is found to exist. And in this Kerr-Schild-type coordinates, truely maximal extension of its global structure by analytically continuing to ``antigravity universe'' region is carried out.Comment: 17 pages, 1 figure, Revtex, Accepted for publication in Phys. Rev.
    corecore