1,836 research outputs found

    An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons

    Full text link
    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics, in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and super-sonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.Comment: 5 pages Main + 5 pages Supplementary, 8 figure

    Search for the rare decay B→Kνν̅

    Get PDF

    Interplay of the exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs

    Full text link
    We present a systematic study of the exciton/electron-hole plasma photoluminescence dynamics in bulk GaAs for various lattice temperatures and excitation densities. The competition between the exciton and electron-hole pair recombination dominates the onset of the luminescence. We show that the metal-to-insulator transition, induced by temperature and/or excitation density, can be directly monitored by the carrier dynamics and the time-resolved spectral characteristics of the light emission. The dependence on carrier density of the photoluminescence rise time is strongly modified around a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2 meV). In a similar way, the rise-time dependence on lattice temperature undergoes a relatively abrupt change at an excitation density of 120-180x10^15 cm^-3, which is about five times greater than the calculated Mott density in GaAs taking into account many body corrections.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Spin rings in bi-stable planar semiconductor microcavities

    Full text link
    A unique feature of exciton-polaritons, inherited from their mixed light-matter origin, is the strongly spin-dependent polariton-polariton interaction, which has been predicted to result in the formation of spin rings in real space [Shelykh et al., Phys. Rev. Lett. 100, 116401 (2008)]. Here we experimentally demonstrate the spin bi-stability of exciton-polaritons in an InGaAs-based semiconductor microcavity under resonant optical pumping. We observe the formation of spin rings whose size can be finely controlled in a spatial scale down to the micrometer range, much smaller than the spot size. We additionally evaluate the sign and magnitude of the antiparallel polariton spin interaction constant.Comment: 5 pages, 4 figure

    Analysis of the D^+ → K^-π^+e^+ν_e decay channel

    Get PDF
    Using 347.5  fb^(-1) of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×10^3 signal events for the D^+ → K^-π^+e^+ν_e decay channel are analyzed. This decay mode is dominated by the K̅ ^*(892)^0 contribution. We determine the K̅ ^*(892)^0 parameters: m_(K^*(892)^0)=(895.4±0.2±0.2)  MeV/c^2, Γ_(K^*(892)^0)=(46.5±0.3±0.2)  MeV/c^2, and the Blatt-Weisskopf parameter r_(BW) =2.1±0.5±0.5  (GeV/c)^-1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q^2 = 0 (r_V = ^(V(0))/_(A1(0)) = 1.463 ± 0.017 ± 0.031, r_2 = _(A1(0)) ^(A2(0))= 0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q^2 variation of A_1 and A_2: m_A=(2.63±0.10±0.13)  GeV/c^2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D^+ → K^-π^+π^+ channel as a normalization, we measure the D^+ semileptonic branching fraction: B(D^+ → K^-π^+e^+ν_e)=(4.00±0.03±0.04±0.09)×10^(-2), where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A_1 at q^2=0: A_1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments

    Observation of η_c(1S) and η_c(2S) decays to K^+K^-π^+π^-π^0 in two-photon interactions

    Get PDF
    We study the processes γγ→K_S^0K^±π^∓ and γγ→K^+K^-π^+π-π^0 using a data sample of 519.2fb^(-1) recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at center-of-mass energies near the Υ(nS) (n=2, 3, 4) resonances. We observe the η_c(1S), χ_(c0)(1P) and η_c(2S) resonances produced in two-photon interactions and decaying to K^+K^-π^+π^-π^0, with significances of 18.1, 5.4 and 5.3 standard deviations (including systematic errors), respectively, and report 4.0σ evidence of the χ_(c2)(1P) decay to this final state. We measure the η_c(2S) mass and width in K_S^0K^±π^∓ decays, and obtain the values m(η_c(2S))=3638.5±1.5±0.8  MeV/c^2 and Γ(η_c(2S))=13.4±4.6±3.2  MeV, where the first uncertainty is statistical and the second is systematic. We measure the two-photon width times branching fraction for the reported resonance signals, and search for the χ_(c2)(2P) resonance, but no significant signal is observed

    Evidence for the decay X(3872)→J/ψω

    Get PDF
    We present a study of the decays B^(0,+)→J/ψπ^+π^-π^0K^(0,+), using 467×10^6 BB[overbar] pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872)→J/ψω, with product branching fractions B(B^+→X(3872)K^+)×B(X(3872)→J/ψω)=[0.6±0.2(stat)±0.1(syst)]×10^(-5), and B(B^0→X(3872)K^0)×B(X(3872)→J/ψω)=[0.6±0.3(stat)±0.1(syst)]×10^(-5). A detailed study of the π^+π^-π^0 mass distribution from X(3872) decay favors a negative-parity assignment
    • …
    corecore