48 research outputs found

    Accelerating dark energy models in bianchi Type-V space-time

    Full text link
    Some new exact solutions of Einstein's field equations in a spatially homogeneous and anisotropic Bianchi type-V space-time with minimally interaction of perfect fluid and dark energy components have been obtained. To prevail the deterministic solution we choose the scale factor a(t)=tneta(t) = \sqrt{t^{n}e^{t}}, which yields a time dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We find that for n≥1n \geq 1, the quintessence model is reproducible with present and expected future evolution of the universe. The other models (for n<1n < 1), we observe the phantom scenario. The quintessence as well as phantom models approach to isotropy at late time. For different values of nn, we can generate a class of physically viable DE models. The cosmic jerk parameter in our descended model is also found to be in good concordance with the recent data of astrophysical observations under appropriate condition. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.Comment: 12 pages, 6 figure

    String Cosmology in Anisotropic Bianchi-II Space-time

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological model representing massive strings. The energy-momentum tensor, as formulated by Letelier (1983), has been used to construct a massive string cosmological model for which the expansion scalar is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter in Bianchi-II space-time. A comparative study of accelerating and decelerating modes of the evolution of universe has been carried out in the presence of string scenario. The study reveals that massive strings dominate the early Universe. The strings eventually disappear from the Universe for sufficiently large times, which is in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this version, the cosmic string has been directed along z-direction and the resultant field equations have been solved exactl

    Two-Fluid Scenario for Dark Energy Models in an FRW Universe-Revisited

    Full text link
    In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor a(t)=tneta(t) = \sqrt{t^{n}e^{t}} which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.Comment: 10 pages, 4 figures. arXiv admin note: substantial overlap with arXiv:1011.394

    Modified gravity in a viscous and non-isotropic background

    Full text link
    We study the dynamical evolution of an f(R)f(R) model of gravity in a viscous and anisotropic background which is given by a Bianchi type-I model of the Universe. We find viable forms of f(R)f(R) gravity in which one is exactly the Einsteinian model of gravity with a cosmological constant and other two are power law f(R)f(R) models. We show that these two power law models are stable with a suitable choice of parameters. We also examine three potentials which exhibit the potential effect of f(R)f(R) models in the context of scalar tensor theory. By solving different aspects of the model and finding the physical quantities in the Jordan frame, we show that the equation of state parameter satisfy the dominant energy condition. At last we show that the two power law f(R)f(R) models behave like quintessence model at late times and also the shear coefficient viscosity tends to zero at late times.Comment: 7 pages, 2 figure

    A New Class of Bianchi Type-I Cosmological Models in Scalar-Tensor Theory of Gravitation and Late Time Acceleration

    Full text link
    A new class of a spatially homogeneous and anisotropic Bianchi type-I cosmological models of the universe for perfect fluid distribution within the framework of scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. 113:467, 1986) is investigated. To prevail the deterministic solutions we choose the different scale factors which yield time-dependent deceleration parameters (DP) representing models which generate a transition of the universe from the early decelerated phase to the recent accelerating phase. Three different physically viable models of the universe are obtained in which their anisotropic solutions may enter to some isotropic inflationary era. The modified Einstein's field equations are solved exactly and the models are found to be in good concordance with recent observations. Some physical and geometric properties of the models are also discussed.Comment: 16 pages, 8 figure

    Bianchi type II models in the presence of perfect fluid and anisotropic dark energy

    Full text link
    Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European Physical Journal Plu

    Accelerating Bianchi Type-V Cosmology with Perfect Fluid and Heat Flow in Saez-Ballester Theory

    Full text link
    In this paper we discuss the law of variation of scale factor a=(tket)1na = (t^{k}e^{t})^{\frac{1}{n}} which yields a time-dependent deceleration parameter (DP) representing a new class of models that generate a transition of universe from the early decelerated phase to the recent accelerating phase. Exact solutions of Einstein's modified field equations with perfect fluid and heat conduction are obtained within the framework of Saez-Ballester scalar-tensor theory of gravitation and the model is found to be in good agreement with recent observations. We find, for n = 3, k = 1, the present value of DP in derived model as q_0 = -0.67 which is very near to the observed value of DP at present epoch. We find that the time-dependent DP is sensible for the present day Universe and give an earmark description of evolution of universe. Some physical and geometric properties of the models are also discussed.Comment: 12 pages, 5 figure

    Lyra's Cosmology of Massive String in Anisotropic Bianchi-II Space-time

    Full text link
    The paper deals with a spatially homogeneous and totally anisotropic Bianchi II cosmological models representing massive strings in normal gauge for Lyra's manifold. The modified Einstein's field equations have been solved by applying variation law for Hubble's parameter. This law generates two type of solutions for average scale factor, one is of power law type and other is of exponential law type. The power law describes the dynamics of Universe from big bang to present epoch while exponential law seems reasonable to project dynamics of future Universe. It has been found that the displacement actor (β)(\beta) is a decreasing function of time and it approaches to small positive value at late time, which is collaborated with Halford (1970) as well as recent observations of SN Ia. The study reveals that massive strings dominate in early Universe and eventually disappear from Universe for sufficiently large time, which is in agreement with the current astronomical observations.Comment: 12 pages, 5 figure
    corecore