3,968 research outputs found

    The tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin

    Full text link
    This article extends previous studies on the effect of tensor terms in the Skyrme energy density functional by breaking of time-reversal invariance. We have systematically probed the impact of tensor terms on properties of superdeformed rotational bands calculated within the cranked Hartree-Fock-Bogoliubov approach for different parameterizations covering a wide range of values for the isoscalar and isovector tensor coupling constants. We analyze in detail the contribution of the tensor terms to the energies and dynamical moments of inertia and study their impact on quasi-particle spectra. Special attention is devoted to the time-odd tensor terms, the effect of variations of their coupling constants and finite-size instabilities.Comment: 28 pages, 34 figure

    An Investigation of Be/X-ray Pulsars with OGLE-III Data

    Get PDF
    We have studied five seasons of OGLE-III data for eight SMC Be/X-ray pulsars for which no other survey data were available. We have determined orbital periods for four of these binary systems, one of which also shows nonradial pulsations. Optical identification of SMC X-2 is reconsidered, but no periods were found for either of the two possible candidates

    Time-odd mean fields in covariant density functional theory: Rotating systems

    Full text link
    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration and rotational frequency dependences of their impact on the moments of inertia have been analysed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid body value. The structure of the currents in rotating frame, their microscopic origin and the relations to the moments of inertia have been systematically analysed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analysed in detail.Comment: 20 pages. 16 figure

    Modelling the Galactic Bar Using Red Clump Giants

    Get PDF
    The color-magnitude diagrams of 7×105\sim 7 \times 10^5 stars obtained for 12 fields across the Galactic bulge with the OGLE project reveal a well-defined population of bulge red clump giants. We find that the distributions of the apparent magnitudes of the red clump stars are systematically fainter when moving towards lower galactic ll fields. The most plausible explanation of this distinct trend is that the Galactic bulge is a bar, whose nearest end lies at positive galactic longitude. We model this Galactic bar by fitting for all fields the observed luminosity functions in the red clump region of the color-magnitude diagram. We find that almost regardless of the analytical function used to describe the 3-D stars distribution of the Galactic bar, the resulting models have the major axis inclined to the line of sight by 2030deg20-30\deg, with axis ratios corresponding to x0:y0:z0=3.5:1.5:1x_0:y_0:z_0=3.5:1.5:1. This puts a strong constraint on the possible range of the Galactic bar models. Gravitational microlensing can provide us with additional constrains on the structure of the Galactic bar.Comment: submitted to the New Astronomy, 27 pages, 11 figures; also available at ftp://www.astro.princeton.edu/stanek/Barmodel and through WWW at http://www.astro.princeton.edu/~library/prep.htm
    corecore