1,142 research outputs found
Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate
Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits
HEAO 1 measurements of the galactic ridge
The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin
Rapid X-ray variability in the Seyfert galaxy NGC 6814
The HEAO-1 A-2 high time resolution X-ray observations of the X-ray emitting Seyfert I Galaxy NGC 6814 are reported. In sharp distinction with a sample of over 30 active galactic nuclei this object showed strong X-ray variability on timescales less than 3 hours. The mean flux on a timescale of 90 minutes varied by a factor of approximately 2.5 corresponding to Delta L sub x being approximately 1 x 10 to the 43rd power ergs/sec. An autocorrelation analysis shows a characteristic time for variability of 100 (+60 or -25) seconds. There is no indication of spectral variability with an upper limit on a change in the power law spectral index of the absolute value of Delta gamma .37, for a factor two change in intensity. The constraints of such rapid variability on a wide variety of X-ray source mechanisms are considered
X-ray spectra of Hercules X-1. 1: Iron line fluorescence from a subrelativistic shell
The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV from August 29 to September 3, 1975. A broad iron line feature is observed in the normal high state spectrum. The line equivalent width is given along with its full-width-half-maximum energy. Iron line fluorescence from an opaque, cool shell of material at the Alfven surface provides the necessary luminosity in this feature. The line energy width can be due to Doppler broadening if the shell is forced to corotate with the pulsar at a radius 800 million cm. Implications of this model regarding physical conditions near Her X-1 are discussed
Observations of low luminosity X-ray sources in Vela-Puppis
Results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg are presented. This region contains at least six low luminosity X-ray sources within approximately 10 deg. of PSRO833-45, which is near the center of the Gum Nebula. The X-ray source associated with the Vela pulsar, 4U0833-45, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period, the non thermal power law spectrum, and models of the X-ray come from an extended source approximately 1 deg in radius. The observation of a high temperature spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OSO752-39. Other spectra from this region are discussed
X-ray observations of BL Lac objects
The BL Lac objects MK501 and MK421 were observed with OSO-8 and HEAO-1 X-ray detectors in the 2-60 keV band. Their spectra are similar with best fitting power laws having energy index -.4 alpha 4. A soft X-ray excess is indicated in their spectra. There was no detectable X-ray absorption with implied column densities N sub H 1.5 x 10 to the 22d power at sq cm. MK421 was a factor 6 weaker in November 1977 than in May 1977. An identification of PKS0548-322 with a new source H0548,-32 is suggested
Time-resolved optical photometry of the ultra-compact binary 4U0614+091
We present a detailed optical study of the ultra-compact X-ray binary
4U0614+091. We have used 63 hrs of time-resolved optical photometry taken with
three different telescopes (IAC80, NOT and SPM) to search for optical
modulations. The power spectra of each dataset reveals sinusoidal modulations
with different periods, which are not always present. The strongest modulation
has a period of 51.3 mins, a semi-amplitude of 4.6 mmags, and is present in the
IAC80 data. The SPM and NOT data show periods of 42 mins and 64 mins
respectively, but with much weaker amplitudes, 2.6 mags and 1.3 mmags
respectively. These modulations arise from either X-ray irradiation of the
inner face of the secondary star and/or a superhump modulation from the
accretion disc, or quasi-periodic modulations in the accretion disc. It is
unclear whether these periods/quasi-periodic modulations are related to the
orbital period, however, the strongest period of 51.3 mins is close to earlier
tentative orbital periods. Further observations taken over a long base-line are
encouraged.Comment: Accepted for publication in PAS
The Long Term Stability of Oscillations During Thermonuclear X-ray Bursts: Constraining the Binary X-ray Mass Function
We report on the long term stability of the millisecond oscillations observed
with the Rossi X-ray Timing Explorer (RXTE) during thermonuclear X-ray bursts
from the low mass X-ray binaries (LMXB) 4U 1728-34 and 4U 1636-53. We show that
bursts from 4U 1728-34 spanning more than 1.5 years have observed asymptotic
oscillation periods which are within 0.2 microsec. of each other, well within
the magnitude which could be produced by the orbital motion of the neutron star
in a typical LMXB. This stability implies a timescale to change the oscillation
period of > 23,000 years, suggesting a highly stable process such as stellar
rotation as the oscillation mechanism. We show that period offsets in three
distinct bursts from 4U 1636-53 can be plausibly interpreted as due to orbital
motion of the neutron star in this 3.8 hour binary system. We discuss the
constraints on the mass function which can in principle be derived using this
technique.Comment: 11 pages, 4 figures. AASTeX, to be published in the Astrophysical
Journal Letter
- …