38,062 research outputs found

    Quantum network coding for quantum repeaters

    Full text link
    This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the first time, that quantum network coding techniques can increase the transmission rate in such quantum networks as well.Comment: 9 pages, 11figure

    Role of anion size, magnetic moment, and disorder on the properties of the organic conductor kappa-(BETS)_2Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}

    Full text link
    Shubnikov-de Haas and angular dependent magnetoresistance oscillations have been used to explore the role of anion size, magnetic moment, and disorder in the organic conductors kappa-(BETS)_2GaBr_{4} and kappa-(BETS)_2FeCl_{2}_Br_{2} in the isomorphic class kappa-(BETS)_2Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}. The results, combined with previous work, show correlations between the anion composition (Ga_{1-x}Fe_{x}Cl_{4-y}_Br_{y}) and the superconducting transition temperature, effective mass, Fermi surface topology, and the mean free path.Comment: 5 pages, 6 figure

    Superconductivity in an organic insulator at very high magnetic fields

    Full text link
    We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ\lambda-(BETS)2_2FeCl4_4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field {\em compensates} the exchange field of aligned Fe3+^{3+} ions. We further argue that the Fe3+^{3+} moments are essential to stabilize the resulting singlet, two-dimensional superconducting stateComment: 9 pages 3 figure

    Large thermal Hall coefficient in bismuth

    Full text link
    We present a systematical study of thermal Hall effect on a bismuth single crystal by measuring resistivity, Hall coefficient, and thermal conductivity under magnetic field, which shows a large thermal Hall coefficient comparable to the largest one in a semiconductor HgSe. We discuss that this is mainly due to a large mobility and a low thermal conductivity comparing theoretical calculations, which will give a route for controlling heat current in electronic devices.Comment: 4pages, 3 figure

    Cosmic ray tests of a GEM-based TPC prototype operated in Ar-CF4-isobutane gas mixtures

    Full text link
    Argon with an admixture of CF4 is expected to be a good candidate for the gas mixture to be used for a time projection chamber (TPC) in the future linear collider experiment because of its small transverse diffusion of drift electrons especially under a strong magnetic field. In order to confirm the superiority of this gas mixture over conventional TPC gases we carried out cosmic ray tests using a GEM-based TPC operated mostly in Ar-CF4-isobutane mixtures under 0 - 1 T axial magnetic fields. The measured gas properties such as gas gain and transverse diffusion constant as well as the observed spatial resolution are presented.Comment: 22 pages, 18 figures. Published in Nuclear Instruments and Methods in Physics Research A. Fig. 3 in the introduction was corrected since it had not been properly normalized. Minor corrections and no changes in the conclusio

    Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn1−x_{1-x}Cox_{x}O

    Full text link
    The magnetic properties of Zn1−x_{1-x}Cox_xO (x=0.07x=0.07 and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMCD) at Co 2p2p core-level absorption edge. The line shapes of the absorption spectra are the same in all the films and indicate that the Co2+^{2+} ions substitute for the Zn sites. The magnetic-field and temperature dependences of the XMCD intensity are consistent with the magnetization measurements, indicating that except for Co there are no additional sources for the magnetic moment, and demonstrate the coexistence of paramagnetic and ferromagnetic components in the homo-epitaxial Zn1−x_{1-x}Cox_{x}O thin films, in contrast to the ferromagnetism in the hetero-epitaxial Zn1−x_{1-x}Cox_{x}O films studied previously. The analysis of the XMCD intensities using the Curie-Weiss law reveals the presence of antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD intensities and magnetization signals indicate that most of Co ions are non-magnetic probably because they are strongly coupled antiferromagnetically with each other. Annealing in a high vacuum reduces both the paramagnetic and ferromagnetic signals. We attribute the reductions to thermal diffusion and aggregation of Co ions with antiferromagnetic nanoclusters in Zn1−x_{1-x}Cox_{x}O.Comment: 21 pages, 7 figures, accepted for Physical Review

    Density matrix renormalization group algorithm for Bethe lattices of spin 1/2 or 1 sites with Heisenberg antiferromagnetic exchange

    Full text link
    An efficient density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z=3Z = 3 and antiferromagnetic exchange between nearest neighbor spins s=1/2s= 1/2 or 1 sites in successive generations gg. The algorithm is accurate for s=1s = 1 sites. The ground states are magnetic with spin S(g)=2gsS(g) = 2^g s, staggered magnetization that persists for large g>20g > 20 and short-range spin correlation functions that decrease exponentially. A finite energy gap to S>S(g)S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for ss = 1/2 and 1 are interpreted in terms of an analytical three-site model.Comment: 7 Pages and 8 figure
    • …
    corecore