73 research outputs found

    Neural network ensembles: Evaluation of aggregation algorithms

    Get PDF
    Ensembles of artificial neural networks show improved generalization capabilities that outperform those of single networks. However, for aggregation to be effective, the individual networks must be as accurate and diverse as possible. An important problem is, then, how to tune the aggregate members in order to have an optimal compromise between these two conflicting conditions. We present here an extensive evaluation of several algorithms for ensemble construction, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential aggregation algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We introduce modified algorithms that cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a sensible improvement in performance on most of the standard statistical databases used as benchmarks.Comment: 35 pages, 2 figures, In press AI Journa

    Superconductivity and incommensurate spin fluctuations in a generalized t-J model for the cuprates

    Full text link
    We consider the slave-fermion Schwinger-boson decomposition of an effective model obtained through a systematic low-energy reduction of the three-band Hubbard Hamiltonian. The model includes a three-site term t'' similar to that obtained in the large-U limit of the Hubbard model but of opposite sign for realistic or large O-O hopping. For parameters close to the most realistic ones for the cuprates, the mean-field solution exhibits d+s superconductivity (predominantly d_{x^2-y^2}) with a dependence on doping x very similar to the experimentally observed. We also obtained incommensurate peaks at wave vectors near π(1,1+(−)2x)\pi (1,1 +(-) 2x) in the spin structure factor, which also agree with experiment.Comment: 9 pages, latex, 2 figures, to appear in Europhys. Let

    Schwinger-boson approach to quantum spin systems: Gaussian fluctuactions in the "natural" gauge

    Full text link
    We compute the Gaussian-fluctuation corrections to the saddle-point Schwinger-boson results using collective coordinate methods. Concrete application to investigate the frustrated J1-J2 antiferromagnet on the square lattice shows that, unlike the saddle-point predictions, there is a quantum nonmagnetic phase for 0.53 < J2/J1 < 0.64. This result is obtained by considering the corrections to the spin stiffness on large lattices and extrapolating to the thermodynamic limit, which avoids the infinite-lattice infrared divergencies associated to Bose condensation. The very good agreement of our results with exact numerical values on finite clusters lends support to the calculational scheme employed.Comment: 4 pages, Latex, 3 figures included as eps files,minor correction

    Stability of homogeneous magnetic phases in a generalized t-J model

    Full text link
    We study the stability of homogeneous magnetic phases in a generalized t-J model including a same-sublattice hopping t' and nearest-neighbor repulsion V by means of the slave fermion-Schwinger boson representation of spin operators. At mean-field order we find, in agreement with other authors, that the inclusion of further-neighbor hopping and Coulomb repulsion makes the compressibility positive, thereby stabilizing at this level the spiral and Neel orders against phase separation. However, the consideration of Gaussian fluctuation of order parameters around these mean-field solutions produces unstable modes in the dynamical matrix for all relevant parameter values, leaving only reduced stability regions for the Neel phase. We have computed the one-loop corrections to the energy in these regions, and have also briefly considered the effects of the correlated hopping term that is obtained in the reduction from the Hubbard to the t-J model.Comment: 5 pages, 5 figures, Revte

    The Heisenberg model on the 1/5-depleted square lattice and the CaV4O9 compound

    Full text link
    We investigate the ground state structure of the Heisenberg model on the 1/5-depleted square lattice for arbitrary values of the first- and second-neighbor exchange couplings. By using a mean-field Schwinger-boson approach we present a unified description of the rich ground-state diagram, which include the plaquette and dimer resonant-valence-bond phases, an incommensurate phase and other magnetic orders with complex magnetic unit cells. We also discuss some implications of ours results for the experimental realization of this model in the CaV4O9 compound.Comment: 4 pages, Latex, 7 figures included as eps file

    Rotational invariance and order-parameter stiffness in frustrated quantum spin systems

    Full text link
    We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation corrections to the order-parameter stiffness of two frustrated quantum spin systems: the triangular-lattice Heisenberg antiferromagnet and the J1-J2 model on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we found that the corrections weaken the stiffness, but the ground state of the system remains ordered in the classical 120 spiral pattern. In the case of the J1-J2 model, with increasing frustration the stiffness is reduced until it vanishes, leaving a small window 0.53 < J2/J1 < 0.64 where the system has no long-range magnetic order. In addition, we discuss several methodological questions related to the Schwinger-boson approach. In particular, we show that the consideration of finite clusters which require twisted boundary conditions to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to correct the Schwinger-boson predictions.Comment: 9 pages, Latex, 6 figures as ps files, fig.1 changed and minor text corrections, to appear in Phys.Rev.

    Nuclear Magnetic Relaxation in the Ferrimagnetic Chain Compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O: Three-Magnon Scattering?

    Full text link
    Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O are explained by an elaborately modified spin-wave theory. We give a strong evidence of the major contribution to 1/T_1_ being made by the three-magnon scattering rather than the Raman one.Comment: J. Phys.: Condens. Matter 16, No. 49, 9023 (2004
    • …
    corecore