264 research outputs found
Quantum correlations of two optical fields close to electromagnetically induced transparency
We show that three-level atoms excited by two cavity modes in a
configuration close to electromagnetically induced transparency can produce
strongly squeezed bright beams or correlated beams which can be used for
quantum non demolition measurements. The input intensity is the experimental
"knob" for tuning the system into a squeezer or a quantum non demolition
device. The quantum correlations become ideal at a critical point characterized
by the appearance of a switching behavior in the mean fields intensities. Our
predictions, based on a realistic fully quantum 3-level model including cavity
losses and spontaneous emission, allow direct comparison with future
experiments.Comment: 4 pages, 5 figure
How to measure squeezing and entanglement of Gaussian states without homodyning
We propose a scheme for measuring the squeezing, purity, and entanglement of
Gaussian states of light that does not require homodyne detection. The
suggested setup only needs beam splitters and single-photon detectors. Two-mode
entanglement can be detected from coincidences between photodetectors placed on
the two beams.Comment: 4 pages, 2 figures, RevTe
Arbitrarily Large Continuous-Variable Cluster States from a Single Quantum Nondemolition Gate
We present a compact experimental design for producing an arbitrarily large
optical continuous-variable cluster state using just one single-mode vacuum
squeezer and one quantum nondemolition gate. Generating the cluster state and
computing with it happen simultaneously: more entangled modes become available
as previous modes are measured, thereby making finite the requirements for
coherence and stability even as the computation length increases indefinitely.Comment: (v2) 5 pages, 4 color figures, added brief mention of fault
tolerance, version accepted for publication (note: actual published version
is edited slightly for space); (v1) 4 pages, 4 color figure
Deterministic Secure Communications using Two-Mode Squeezed States
We propose a scheme for quantum cryptography that uses the squeezing phase of
a two-mode squeezed state to transmit information securely between two parties.
The basic principle behind this scheme is the fact that each mode of the
squeezed field by itself does not contain any information regarding the
squeezing phase. The squeezing phase can only be obtained through a joint
measurement of the two modes. This, combined with the fact that it is possible
to perform remote squeezing measurements, makes it possible to implement a
secure quantum communication scheme in which a deterministic signal can be
transmitted directly between two parties while the encryption is done
automatically by the quantum correlations present in the two-mode squeezed
state.Comment: 10 pages, 4 figure
Recovery of continuous wave squeezing at low frequencies
We propose and demonstrate a system that produces squeezed vacuum using a
pair of optical parametric amplifiers. This scheme allows the production of
phase sidebands on the squeezed vacuum which facilitate phase locking in
downstream applications. We observe strong, stably locked, continuous wave
vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative
resonator configuration to overcome low frequency squeezing degradation caused
by the optical parametric amplifiers.Comment: 9 pages, 4 figure
Strong Quantum Spin Correlations Observed in Atomic Spin Mixing
We have observed sub-Poissonian spin correlations generated by collisionally
induced spin mixing in a spin-1 Bose-Einstein condensate. We measure a quantum
noise reduction of -7 dB (-10 dB corrected for detection noise) below the
standard quantum limit (SQL) for the corresponding coherent spin states. The
spin fluctuations are detected as atom number differences in the spin states
using fluorescent imaging that achieves a detection noise floor of 8 atoms per
spin component for a probe time of 100 s.Comment: 5 pages, 4 figure
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
Recent experimental measurements of atomic intensity correlations through
atom shot noise suggest that atomic quadrature phase correlations may soon be
measured with a similar precision. We propose a test of local realism with
mesoscopic numbers of massive particles based on such measurements. Using
dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic
atoms, we demonstrate that strongly entangled atomic beams may be produced
which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures,
in direct analogy to the position and momentum correlations originally
considered by EPR.Comment: Final published version (corrections in Ref. [32], updated
references
Towards Einstein-Podolsky-Rosen quantum channel multiplexing
A single broadband squeezed field constitutes a quantum communication
resource that is sufficient for the realization of a large number N of quantum
channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states.
Each channel can serve as a resource for, e.g. independent quantum key
distribution or teleportation protocols. N-fold channel multiplexing can be
realized by accessing 2N squeezed modes at different Fourier frequencies. We
report on the experimental implementation of the N=1 case through the
interference of two squeezed states, extracted from a single broadband squeezed
field, and demonstrate all techniques required for multiplexing (N>1). Quantum
channel frequency multiplexing can be used to optimize the exploitation of a
broadband squeezed field in a quantum information task. For instance, it is
useful if the bandwidth of the squeezed field is larger than the bandwidth of
the homodyne detectors. This is currently a typical situation in many
experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental
work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of
our work and its possible applicatio
Quantum Communication with an Accelerated Partner
An unsolved problem in relativistic quantum information research is how to
model efficient, directional quantum communication between localised parties in
a fully quantum field theoretical framework. We propose a tractable approach to
this problem based on solving the Heisenberg evolution of localized field
observables. We illustrate our approach by analysing, and obtaining approximate
analytical solutions to, the problem of communicating coherent states between
an inertial sender, Alice and an accelerated receiver, Rob. We use these
results to determine the efficiency with which continuous variable quantum key
distribution could be carried out over such a communication channel.Comment: Additional explanatory text and typo in Eq.17 correcte
- …