175,827 research outputs found
Charged Dilatonic AdS Black Holes and Magnetic AdS_{D-2} x R^2 Vacua
We consider D-dimensional Einstein gravity coupled to two U(1) fields and a
dilaton with a scalar potential. We derive the condition that the analytical
AdS black holes with two independent charges can be constructed. Turning off
the cosmological constant, the extremal Reissner-Nordstrom black hole emerges
as the harmonic superposition of the two U(1) building blocks. With the
non-vanishing cosmological constant, our extremal solutions contain the
near-horizon geometry of AdS_2 x R^{D-2} with or without a hyperscaling. We
also obtain the magnetic AdS_{D-2} x Y^2 vacua where Y^2 can be R^2, S^2 or
hyperbolic 2-space. These vacua arise as the fix points of some super
potentials and recover the known supersymmetric vacua when the theory can be
embedded in gauged supergravities. The AdS_{D-2} x R^2 vacua are of particular
interest since they are dual to some quantum field theories at the lowest
Landau level. By studying the embedding of some of these solutions in the
string and M-theory, we find that the M2/M5-system with the equal M2 and M5
charges can intersect with another such M2/M5 on to a dyonic black hole.
Analogous intersection rule applies also to the D1/D5-system. The intersections
are non-supersymmetric but in the manner of harmonic superpositions.Comment: Latex, 26 pages, typos corrected and references added. To appear in
JHE
Galaxy Ecosystems: gas contents, inflows and outflows
We use a set of observational data for galaxy cold gas mass fraction and gas
phase metallicity to constrain the content, inflow and outflow of gas in
central galaxies hosted by halos with masses between to
. The gas contents in high redshift galaxies are obtained by
combining the empirical star formation histories of Lu et al. (2014) and star
formation models that relate star formation rate with the cold gas mass in
galaxies. We find that the total baryon mass in low-mass galaxies is always
much less than the universal baryon mass fraction since , regardless of
star formation model adopted. The data for the evolution of the gas phase
metallicity require net metal outflow at , and the metal loading
factor is constrained to be about , or about of the metal yield.
Based on the assumption that galactic outflow is more enriched in metal than
both the interstellar medium and the material ejected at earlier epochs, we are
able to put stringent constraints on the upper limits for both the net
accretion rate and the net mass outflow rate. The upper limits strongly suggest
that the evolution of the gas phase metallicity and gas mass fraction for
low-mass galaxies at is not compatible with strong outflow. We
speculate that the low star formation efficiency of low-mass galaxies is owing
to some preventative processes that prevent gas from accreting into galaxies in
the first place.Comment: 15 pages, 10 figures, submitted to MNRA
Vacua and Exact Solutions in Lower- Limits of EGB
We consider the action principles that are the lower dimensional limits of
the Einstein-Gauss-Bonnet gravity {\it via} the Kaluza-Klein route. We study
the vacua and obtain some exact solutions. We find that the reality condition
of the theories may select one vacuum over the other from the two vacua that
typically arise in Einstein-Gauss-Bonnet gravity. We obtain exact black hole
and cosmological solutions carrying scalar hair, including scalar hairy BTZ
black holes with both mass and angular momentum turned on. We also discuss the
holographic central charges in the asymptotic AdS backgrounds.Comment: Latex, 19 page
T-duality and U-duality in toroidally-compactified strings
We address the issue of T-duality and U-duality symmetries in the
toroidally-compactified type IIA string. It is customary to take as a starting
point the dimensionally-reduced maximal supergravity theories, with certain
field strengths dualised such that the classical theory exhibits a global
symmetry, where n=11-D in D dimensions. A discrete subgroup then
becomes the conjectured U-duality group. In dimensions D\le 6, these necessary
dualisations include NS-NS fields, whose potentials, rather than merely their
field strengths, appear explicitly in the couplings to the string worldsheet.
Thus the usually-stated U-duality symmetries act non-locally on the fundamental
fields of perturbative string theory. At least at the perturbative level, it
seems to be more appropriate to consider the symmetries of the versions of the
lower-dimensional supergravities in which no dualisations of NS-NS fields are
required, although dualisations of the R-R fields are permissible since these
couple to the string through their field strengths. Taking this viewpoint, the
usual T-duality groups survive unscathed, as one would hope since T-duality is
a perturbative symmetry, but the U-duality groups are modified in D\le 6.Comment: Latex, 21 pages. References and discussion adde
Cosmology with a Nonlinear Born-Infeld type Scalar Field
Recent many physicists suggest that the dark energy in the universe might
result from the Born-Infeld(B-I) type scalar field of string theory. The
universe of B-I type scalar field with potential can undergo a phase of
accelerating expansion. The corresponding equation of state parameter lies in
the range of . The equation of state parameter
of B-I type scalar field without potential lies in the range of
. We find that weak energy condition and strong energy
condition are violated for phantom B-I type scalar field. The equation of state
parameter lies in the range of .Comment: 10 pages without figure
- …
