162 research outputs found
The Beurling operator for the hyperbolic plane
We find a Beurling operator for the hyperbolic plane, and obtain an
norm identity for it, as well as estimates.Comment: 14 page
Invariant subspaces on multiply connected domains
The lattice of invariant subspaces of several Banach spaces of analytic functions on the unit disk, for example the Bergman spaces and the Dirichlet spaces, have been studied recently. A natural question is to what extent these investigations carry over to analogously defined spaces on an annulus. We consider this question in the context of general Banach spaces of analytic functions on finitely connected domains âŠ. The main result reads as follows: Assume that B is a Banach space of analytic functions satisfying some conditions on the domain âŠ. Assume further that M(B) is the set of all multipliers of B. Let âŠ1 be a domain obtained from ⊠by adding some of the bounded connectivity components of C\âŠ. Also, let B1 be the closed subspace of B of all functions that extend analytically to âŠ1. Then the mapping I 7â clos(I · M(B)) gives a one-to-one correspondence between a class of multiplier invariant subspaces I of B1, and a class of multiplier invariant subspaces J of B. The inverse mapping is given by J 7â J â© B1
Hyperbolic Fourier series and the Klein-Gordon equation
In an effort to extend classical Fourier theory, Hedenmalm and
Montes-Rodr\'{\i}guez (2011) found that the function system is weak-star complete in
when range over the integers with . It
turns out that the system can be used to provide unique representation of
functions and more generally distributions on the real line . For
instance, we may represent uniquely the unit point mass at a point
: with at most polynomial growth of the
coefficients, so that the sum converges in the sense of distribution theory. In
a natural sense, the system is biorthogonal to the initial
system on the real line. More generally, for a
distribution on the compactified real line, we may decompose it in a
\emph{hyperbolic Fourier series}
understood to converge in the sense of distribution theory. Such hyperbolic
Fourier series arise from two different considerations. One is the Fourier
interpolation problem of recovering a radial function on
from partial information on and its Fourier transform ,
studied by Radchenko and Viazovska (2019). Another consideration is the
interpolation theory of the Klein-Gordon equation .
For instance, the biorthogonal system leads to a collection of
solutions that vanish along the lattice-cross of points and save for one of these points. These interpolating solutions allow for
restoration of a given solution from its values on the lattice-cross.Comment: 90 page
On the Makarov law of the iterated logarithm
We obtain considerable improvement of Makarov's estimate of the boundary behavior of a general conformal mapping from the unit disk to a simply connected domain in the complex plane. We apply the result to improve Makarov's comparison of harmonic measure with Hausdorff measure on simply connected domains. © 2007 American Mathematical Society
The polyanalytic Ginibre ensembles
We consider a polyanalytic generalization of the Ginibre ensemble. This
models allowing higher Landau levels (the Ginibre ensemble corresponds to the
lowest Landau level). We study the local behavior of this point process under
blow-ups.Comment: 31 page
Crystalline Order On Riemannian Manifolds With Variable Gaussian Curvature And Boundary
We investigate the zero temperature structure of a crystalline monolayer
constrained to lie on a two-dimensional Riemannian manifold with variable
Gaussian curvature and boundary. A full analytical treatment is presented for
the case of a paraboloid of revolution. Using the geometrical theory of
topological defects in a continuum elastic background we find that the presence
of a variable Gaussian curvature, combined with the additional constraint of a
boundary, gives rise to a rich variety of phenomena beyond that known for
spherical crystals. We also provide a numerical analysis of a system of
classical particles interacting via a Coulomb potential on the surface of a
paraboloid.Comment: 12 pages, 8 figure
Estimates for vector valued Dirichlet polynomials
[EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces.A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417.Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte fïżœr Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4S891161751Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285â304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203â236 (2002)Bennett, G.: Inclusion mappings between l p spaces. J. Funct. Anal. 13, 20â27 (1973)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441â488 (1913)Bohr, H.: Ăber die gleichmĂ€Ăige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203â211 (1913)Carl, B.: Absolut- ( p , 1 ) -summierende identische Operatoren von l u in l v . Math. Nachr. 63, 353â360 (1974)Carlson, F.: Contributions Ă la thĂ©orie des sĂ©ries de Dirichlet. Note i. Ark. föâr Mat., Astron. och Fys. 16(18), 1â19 (1922)de la BretĂšche, R.: Sur lâordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141â148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The BohnenblustâHille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485â497 (2011)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., GarcĂa, D., Maestre, M., Sevilla-Peris, P.: Bohrâs strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165â189 (2011)Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837â2857 (2012)Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220â242 (2010)Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681â697 (2011)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145â163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1â37 (1997)Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155â175 (2001/2002)KwapieĆ, S.: Some remarks on ( p , q ) -absolutely summing operators in l p -spaces. Studia Math. 29, 327â337 (1968)Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676â692 (2010)Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)QueffĂ©lec, H.: H. Bohrâs vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43â60 (1995)Tomczak-Jaegermann, N.: BanachâMazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989
- âŠ