162 research outputs found

    The Beurling operator for the hyperbolic plane

    Full text link
    We find a Beurling operator for the hyperbolic plane, and obtain an L2L^2 norm identity for it, as well as LpL^p estimates.Comment: 14 page

    Invariant subspaces on multiply connected domains

    Get PDF
    The lattice of invariant subspaces of several Banach spaces of analytic functions on the unit disk, for example the Bergman spaces and the Dirichlet spaces, have been studied recently. A natural question is to what extent these investigations carry over to analogously defined spaces on an annulus. We consider this question in the context of general Banach spaces of analytic functions on finitely connected domains ℩. The main result reads as follows: Assume that B is a Banach space of analytic functions satisfying some conditions on the domain ℩. Assume further that M(B) is the set of all multipliers of B. Let ℩1 be a domain obtained from ℩ by adding some of the bounded connectivity components of C\℩. Also, let B1 be the closed subspace of B of all functions that extend analytically to ℩1. Then the mapping I 7→ clos(I · M(B)) gives a one-to-one correspondence between a class of multiplier invariant subspaces I of B1, and a class of multiplier invariant subspaces J of B. The inverse mapping is given by J 7→ J ∩ B1

    Hyperbolic Fourier series and the Klein-Gordon equation

    Full text link
    In an effort to extend classical Fourier theory, Hedenmalm and Montes-Rodr\'{\i}guez (2011) found that the function system em(x)=eiπmx,en†(x)=en(−1/x)=e−iπn/x e_m(x)=e^{i\pi mx},\quad e_n^\dagger(x)=e_n(-1/x)=e^{-i\pi n/x} is weak-star complete in L∞(R)L^{\infty}(\mathbb{R}) when m,nm,n range over the integers with n≠0n\ne0. It turns out that the system can be used to provide unique representation of functions and more generally distributions on the real line R\mathbb{R}. For instance, we may represent uniquely the unit point mass at a point x∈Rx\in\mathbb{R}: ÎŽx(t)=A0(x)+∑n≠0(An(x) eiπnt+Bn(x) e−iπn/t), \delta_x(t)=A_0(x)+\sum_{n\ne0}\big(A_n(x)\,e^{i\pi nt} +B_n(x)\,e^{-i\pi n/t}\big), with at most polynomial growth of the coefficients, so that the sum converges in the sense of distribution theory. In a natural sense, the system {An,Bn}n\{A_n,B_n\}_n is biorthogonal to the initial system {en,en†}n\{e_n,e_n^\dagger\}_n on the real line. More generally, for a distribution ff on the compactified real line, we may decompose it in a \emph{hyperbolic Fourier series} f(t)=a0(f)+∑n≠0(an(f) eiπnt+bn(f) e−iπn/t), f(t)=a_0(f)+\sum_{n\ne0}\big(a_n(f)\,e^{i\pi nt}+b_n(f)\,e^{-i\pi n/t}\big), understood to converge in the sense of distribution theory. Such hyperbolic Fourier series arise from two different considerations. One is the Fourier interpolation problem of recovering a radial function ϕ\phi on Rd\mathbb{R}^d from partial information on ϕ\phi and its Fourier transform ϕ^\hat \phi, studied by Radchenko and Viazovska (2019). Another consideration is the interpolation theory of the Klein-Gordon equation ∂x∂yu+u=0\partial_x\partial_y u+u=0. For instance, the biorthogonal system {An,Bn}n\{A_n,B_n\}_n leads to a collection of solutions that vanish along the lattice-cross of points (πk,0)(\pi k,0) and (0,πl)(0,\pi l) save for one of these points. These interpolating solutions allow for restoration of a given solution uu from its values on the lattice-cross.Comment: 90 page

    On the Makarov law of the iterated logarithm

    Get PDF
    We obtain considerable improvement of Makarov's estimate of the boundary behavior of a general conformal mapping from the unit disk to a simply connected domain in the complex plane. We apply the result to improve Makarov's comparison of harmonic measure with Hausdorff measure on simply connected domains. © 2007 American Mathematical Society

    The polyanalytic Ginibre ensembles

    Full text link
    We consider a polyanalytic generalization of the Ginibre ensemble. This models allowing higher Landau levels (the Ginibre ensemble corresponds to the lowest Landau level). We study the local behavior of this point process under blow-ups.Comment: 31 page

    Crystalline Order On Riemannian Manifolds With Variable Gaussian Curvature And Boundary

    Get PDF
    We investigate the zero temperature structure of a crystalline monolayer constrained to lie on a two-dimensional Riemannian manifold with variable Gaussian curvature and boundary. A full analytical treatment is presented for the case of a paraboloid of revolution. Using the geometrical theory of topological defects in a continuum elastic background we find that the presence of a variable Gaussian curvature, combined with the additional constraint of a boundary, gives rise to a rich variety of phenomena beyond that known for spherical crystals. We also provide a numerical analysis of a system of classical particles interacting via a Coulomb potential on the surface of a paraboloid.Comment: 12 pages, 8 figure

    Estimates for vector valued Dirichlet polynomials

    Full text link
    [EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces.A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417.Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte fïżœr Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4S891161751Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)Bennett, G.: Inclusion mappings between lpl^{p} l p spaces. J. Funct. Anal. 13, 20–27 (1973)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑anns\sum \frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441–488 (1913)Bohr, H.: Über die gleichmĂ€ĂŸige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)Carl, B.: Absolut- (p, 1)(p,\,1) ( p , 1 ) -summierende identische Operatoren von lul_{u} l u in lvl_{v} l v . Math. Nachr. 63, 353–360 (1974)Carlson, F.: Contributions Ă  la thĂ©orie des sĂ©ries de Dirichlet. Note i. Ark. fĂ¶â€r Mat., Astron. och Fys. 16(18), 1–19 (1922)de la BretĂšche, R.: Sur l’ordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141–148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011)Defant, A., GarcĂ­a, D., Maestre, M., PĂ©rez-GarcĂ­a, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., GarcĂ­a, D., Maestre, M., Sevilla-Peris, P.: Bohr’s strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165–189 (2011)Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012)Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010)Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681–697 (2011)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1)L^2(0,1) L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997)Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 12\frac{1}{2} 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155–175 (2001/2002)KwapieƄ, S.: Some remarks on (p, q)(p,\, q) ( p , q ) -absolutely summing operators in lpl_{p} l p -spaces. Studia Math. 29, 327–337 (1968)Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676–692 (2010)Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)QueffĂ©lec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989
    • 

    corecore