10,496 research outputs found
The spark-associated soliton model for pulsar radio emission
We propose a new, self-consistent theory of coherent pulsar radio emission
based on the non-stationary sparking model of Ruderman & Sutherland (1975),
modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these
authors, the polar cap is populated as densely as possible by a number of
sparks with a characteristic perpendicular dimension D approximately equal to
the polar gap height scale h, separated from each other also by about h. Each
spark reappears in approximately the same place on the polar cap for a time
scale much longer than its life-time and delivers to the open magnetosphere a
sequence of electron-positron clouds which flow orderly along a flux tube of
dipolar magnetic field lines. The overlapping of particles with different
momenta from consecutive clouds leads to effective two-stream instability,
which triggers electrostatic Langmuir waves at the altitudes of about 50
stellar radii. The electrostatic oscillations are modulationally unstable and
their nonlinear evolution results in formation of ``bunch-like'' charged
solitons. A characteristic soliton length along magnetic field lines is about
30 cm, so they are capable of emitting coherent curvature radiation at radio
wavelengths. The net soliton charge is about 10^21 fundamental charges,
contained within a volume of about 10^14 cm^3. For a typical pulsar, there are
about 10^5 solitons associated with each of about 25 sparks operating on the
polar cap at any instant. One soliton moving relativisticaly along dipolar
field lines with a Lorentz factor of the order of 100 generates a power of
about 10^21 erg/s by means of curvature radiation. Then the total power of a
typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap
Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect
Magnetic-field-induced phase transitions in the integer quantum Hall effect
are studied under the formation of paired Landau bands arising from Zeeman spin
splitting. By investigating features of modular symmetry, we showed that
modifications to the particle-hole transformation should be considered under
the coupling between the paired Landau bands. Our study indicates that such a
transformation should be modified either when the Zeeman gap is much smaller
than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure
Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces
The tunnel photocurrent between a gold surface and a free-standing
semiconducting thin film excited from the rear by above bandgap light has been
measured as a function of applied bias, tunnel distance and excitation light
power. The results are compared with the predictions of a model which includes
the bias dependence of the tunnel barrier height and the bias-induced decrease
of surface recombination velocity. It is found that i) the tunnel photocurrent
from the conduction band dominates that from surface states. ii) At large
tunnel distance the exponential bias dependence of the current is explained by
that of the tunnel barrier height, while at small distance the change of
surface recombination velocity is dominant
Disordered Regimes of the one-dimensional complex Ginzburg-Landau equation
I review recent work on the ``phase diagram'' of the one-dimensional complex
Ginzburg-Landau equation for system sizes at which chaos is extensive.
Particular attention is paid to a detailed description of the spatiotemporally
disordered regimes encountered. The nature of the transition lines separating
these phases is discussed, and preliminary results are presented which aim at
evaluating the phase diagram in the infinite-size, infinite-time, thermodynamic
limit.Comment: 14 pages, LaTeX, 9 figures available by anonymous ftp to
amoco.saclay.cea.fr in directory pub/chate, or by requesting them to
[email protected]
Non-Thermal X-ray Properties of Rotation Powered Pulsars and Their Wind Nebulae
We present a statistical study of the non-thermal X-ray emission of 27 young
rotation powered pulsars (RPPs) and 24 pulsar wind nebulae (PWNe) by using the
Chandra and the XMM-Newton observations, which with the high spatial
resolutions enable us to spatially resolve pulsars from their surrounding PWNe.
We obtain the X-ray luminosities and spectra separately for RPPs and PWNe, and
then investigate their distribution and relation to each other as well as the
relation with the pulsar rotational parameters. In the pair-correlation
analysis we find that: (1) the X-ray (2-10 keV) luminosities of both pulsar and
PWN (L_{psr} and L_{pwn}) display a strong correlation with pulsar spin down
power Edot and characteristic age, and the scalings resulting from a simple
linear fit to the data are L_{psr} \propto Edot^{0.92 \pm 0.04} and L_{pwn}
\propto Edot^{1.45 \pm 0.08} (68% confidence level), respectively, however,
both the fits are not statistically acceptable; (2) L_{psr} also shows a
possible weak correlation with pulsar period P and period derivative Pdot,
whereas L_{pwn} manifests a similar weak correlation with Pdot only; (3) The
PWN photon index Gamma_{pwn} is positively correlated with L_{pwn} and
L_{pwn}/Edot. We also found that the PWN X-ray luminosity is typically 1 to 10
times larger than that from the underlying pulsar, and the PWN photon indices
span a range of ~1.5 to ~2. The statistic study of PWN spectral properties
supports the particle wind model in which the X-ray emitting electrons are
accelerated by the termination shock of the wind.Comment: 15 pages, 9 figures, 3 Tables, ApJ accepted version. Substantial
revision, especially luminosity uncertainty taken into accounted and one fig
added. Main conclusions unchange
Physics potential of future supernova neutrino observations
We point out possible features of neutrino spectra from a future galactic
core collapse supernova that will enhance our understanding of neutrino mixing
as well as supernova astrophysics. We describe the neutrino flavor conversions
inside the star, emphasizing the role of "collective effects" that has been
appreciated and understood only very recently. These collective effects change
the traditional predictions of flavor conversion substantially, and enable the
identification of neutrino mixing scenarios through signatures like Earth
matter effects.Comment: 8 pages, uses jpconf.cls. Talk given at Neutrino 2008, Christchurch,
NZ. Some entries in Table 2 have been correcte
Elastic and total reaction cross sections of oxygen isotopes in Glauber theory
We systematically calculate the total reaction cross sections of oxygen
isotopes, O, on a C target at high energies using the Glauber
theory. The oxygen isotopes are described with Slater determinants generated
from a phenomenological mean-field potential. The agreement between theory and
experiment is generally good, but a sharp increase of the reaction cross
sections from ^{21}O to ^{23}O remains unresolved. To examine the sensitivity
of the diffraction pattern of elastic scattering to the nuclear surface, we
study the differential elastic-scattering cross sections of proton-^{20,21,23}O
at the incident energy of 300 MeV by calculating the full Glauber amplitude.Comment: 9 pages, 8 figure
From insulator to quantum Hall liquid at low magnetic fields
We have performed low-temperature transport measurements on a GaAs
two-dimensional electron system at low magnetic fields. Multiple
temperature-independent points and accompanying oscillations are observed in
the longitudinal resistivity between the low-field insulator and the quantum
Hall (QH) liquid. Our results support the existence of an intermediate regime,
where the amplitudes of magneto-oscillations can be well described by
conventional Shubnikov-de Haas theory, between the low-field insulator and QH
liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are
observed between the low-field insulator and quantum Hall liqui
On the emergent Semantic Web and overlooked issues
The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues
- …