35,082 research outputs found

    Robust H∞ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise

    Get PDF
    The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation

    Magnification relations of quad lenses and applications on Einstein crosses

    Full text link
    In this work, we mainly study the magnification relations of quad lens models for cusp, fold and cross configurations. By dividing and ray-tracing in different image regions, we numerically derive the positions and magnifications of the four images for a point source lying inside of the astroid caustic. Then, based on the magnifications, we calculate the signed cusp and fold relations for the singular isothermal elliptical lenses. The signed fold relation map has positive and negative regions, and the positive region is usually larger than the negative region as has been confirmed before. It can also explain that for many observed fold image pairs, the fluxes of the Fermat minimum images are apt to be larger than those of the saddle images. We define a new quantity cross relation which describes the magnification discrepancy between two minimum images and two saddle images. Distance ratio is also defined as the ratio of the distance of two saddle images to that of two minimum images. We calculate the cross relations and distance ratios for nine observed Einstein crosses. In theory, for most of the quad lens models, the cross relations decrease as the distance ratios increase. In observation, the cross relations of the nine samples do not agree with the quad lens models very well, nevertheless, the cross relations of the nine samples do not give obvious evidence for anomalous flux ratio as the cusp and fold types do. Then, we discuss several reasons for the disagreement, and expect good consistencies for more precise observations and better lens models in the future.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    Quantal Density Functional Theory of Degenerate States

    Full text link
    The treatment of degenerate states within Kohn-Sham density functional theory (KS-DFT) is a problem of longstanding interest. We propose a solution to this mapping from the interacting degenerate system to that of the noninteracting fermion model whereby the equivalent density and energy are obtained via the unifying physical framework of quantal density functional theory (Q-DFT). We describe the Q-DFT of \textit{both} ground and excited degenerate states, and for the cases of \textit{both} pure state and ensemble v-representable densities. This then further provides a rigorous physical interpretation of the density and bidensity energy functionals, and of their functional derivatives, of the corresponding KS-DFT. We conclude with examples of the mappings within Q-DFT.Comment: 10 pages. minor changes made. to appear in PR

    A posteriori teleportation

    Get PDF
    The article by Bouwmeester et al. on experimental quantum teleportation constitutes an important advance in the burgeoning field of quantum information. The experiment was motivated by the proposal of Bennett et al. in which an unknown quantum state is `teleported' by Alice to Bob. As illustrated in Fig. 1, in the implementation of this procedure, by Bouwmeester et al., an input quantum state is `disembodied' into quantum and classical components, as in the original protocol. However, in contrast to the original scheme, Bouwmeester et al.'s procedure necessarily destroys the state at Bob's receiving terminal, so a `teleported' state can never emerge as a freely propagating state for subsequent examination or exploitation. In fact, teleportation is achieved only as a postdiction.Comment: 1 page LaTeX including 1 figure. Scientific Correspondence about: "Experimental quantum teleportation" Nature 390, 575 (1997

    Current Path Properties of the Transport Anisotropy at Filling Factor 9/2

    Full text link
    To establish the presence and orientation of the proposed striped phase in ultra-high mobility 2D electron systems at filling factor 9/2, current path transport properties are determined by varying the separation and allignment of current and voltage contacts. Contacts alligned orthogonal to the proposed intrinsic striped phase produce voltages consistent with current spreading along the stripes; current driven along the proposed stripe direction results in voltages consistent with channeling along the stripes. Direct comparison is made to current spreading/channeling properties of artificially induced 1D charge modulated systems, which indicates the 9/2 direction.Comment: 10 pages, 4 figure

    Simple Scheme for Efficient Linear Optics Quantum Gates

    Get PDF
    We describe the construction of a conditional quantum control-not (CNOT) gate from linear optical elements following the program of Knill, Laflamme and Milburn [Nature {\bf 409}, 46 (2001)]. We show that the basic operation of this gate can be tested using current technology. We then simplify the scheme significantly.Comment: Problems with PDF figures correcte
    corecore