70,467 research outputs found

    Solar transition region in the quiet Sun and active regions

    Full text link
    The solar transition region (TR), in which above the photosphere the tempera- ture increases rapidly and the density drops dramatically, is believed to play an important role in coronal heating and solar wind acceleration. Long-lasting up-flows are present in the upper TR and interpreted as signatures of mass supply to large coronal loops in the quiet Sun. Coronal bright points (BPs) are local heating phenomena and we found a different Doppler-shift pattern at TR and coronal temperatures in one BP, which might be related to the twisted loop system. The dominant energy loss in the lower TR is the Ly-alpha emission. It has been found that most Ly-alpha radiance profiles are stronger in the blue peak, an asymmetry opposite to higher order Lyman lines. This asymmetry is stronger when the downflow in the middle TR is stronger, indicating that the TR flows play an important role in the line formation process. The peak separation of Ly-alpha is found to be larger in coronal holes than in the quiet Sun, reflecting the different magnetic structures and radiation fields between the two regions. The Lyman line profiles are found to be not reversed in sunspot plume and umbra regions, while they are obviously reversed in the surrounding plage region. At TR temperatures, the densities of the sunspot plume and umbra are a factor of 10 lower than of the plage, indicating that the sunspot plasma emitting at TR temperatures is higher and possibly more extended above sunspots than above the plage region.Comment: This paper has been withdrawn by the author because it's not a referred pape

    The Tensor Current Divergence Equation in U(1) Gauge Theories is Free of Anomalies

    Full text link
    The possible anomaly of the tensor current divergence equation in U(1) gauge theories is calculated by means of perturbative method. It is found that the tensor current divergence equation is free of anomalies.Comment: Revtex4, 7 pages, 2 figure

    Egocentric Hand Detection Via Dynamic Region Growing

    Full text link
    Egocentric videos, which mainly record the activities carried out by the users of the wearable cameras, have drawn much research attentions in recent years. Due to its lengthy content, a large number of ego-related applications have been developed to abstract the captured videos. As the users are accustomed to interacting with the target objects using their own hands while their hands usually appear within their visual fields during the interaction, an egocentric hand detection step is involved in tasks like gesture recognition, action recognition and social interaction understanding. In this work, we propose a dynamic region growing approach for hand region detection in egocentric videos, by jointly considering hand-related motion and egocentric cues. We first determine seed regions that most likely belong to the hand, by analyzing the motion patterns across successive frames. The hand regions can then be located by extending from the seed regions, according to the scores computed for the adjacent superpixels. These scores are derived from four egocentric cues: contrast, location, position consistency and appearance continuity. We discuss how to apply the proposed method in real-life scenarios, where multiple hands irregularly appear and disappear from the videos. Experimental results on public datasets show that the proposed method achieves superior performance compared with the state-of-the-art methods, especially in complicated scenarios

    Observation of Landau level-like quantizations at 77 K along a strained-induced graphene ridge

    Full text link
    Recent studies show that the electronic structures of graphene can be modified by strain and it was predicted that strain in graphene can induce peaks in the local density of states (LDOS) mimicking Landau levels (LLs) generated in the presence of a large magnetic field. Here we report scanning tunnelling spectroscopy (STS) observation of nine strain-induced peaks in LDOS at 77 K along a graphene ridge created when the graphene layer was cleaved from a sample of highly oriented pyrolytic graphite (HOPG). The energies of these peaks follow the progression of LLs of massless 'Dirac fermions' (DFs) in a magnetic field of 230 T. The results presented here suggest a possible route to realize zero-field quantum Hall-like effects at 77 K
    • …
    corecore