62,667 research outputs found

    Chiral Sigma Model with Pion Mean Field in Finite Nuclei

    Full text link
    The properties of infinite matter and finite nuclei are studied by using the chiral sigma model in the framework of the relativistic mean field theory. We reconstruct an extended chiral sigma model in which the omega meson mass is generated dynamically by the sigma condensation in the vacuum in the same way as the nucleon mass. All the parameters of chiral sigma model are essentially fixed from the hadron properties in the free space. In nuclear matter, the saturation property comes out right, but the incompressibility is too large and the scalar and vector potentials are about a half of the phenomenological ones, respectively. This fact is reflected to the properties of finite nuclei. We calculate N = Z even-even mass nuclei between N = 16 and N = 34. The extended chiral sigma model without the pion mean field leads to the result that the magic number appears at N = 18 instead of N = 20 and the magic number does not appear at N = 28 due to the above mentioned nuclear matter properties. The latter problem, however, could be removed by the introduction of the finite pion mean field with the appearance of the magic number at N = 28. We find that the energy differences between the spin-orbit partners are reproduced by the finite pion mean field which is completely a different mechanism from the standard spin-orbit interaction.Comment: 19 pages, 9 figures. Prog. Theor. Phys. to be publishe

    Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two- dimensionalcorrelation spectroscopy

    Get PDF
    We theoretically investigate an electron transfer (ET) process in a dissipative environment by means of two-dimensional (2D) correlation spectroscopy. We extend the reduced hierarchy equations of motion approach to include both overdamped Drude and underdamped Brownian modes. While the overdamped mode describes the inhomogeneity of a system in the slow modulation limit, the underdamped mode expresses the primary vibrational mode coupled with the electronic states. We outline a procedure for calculating 2D correlation spectrum that incorporates the ET processes. The present approach has the capability of dealing with system-bath coherence under an external perturbation, which is important to calculate nonlinear response functions for non-Markovian noise. The calculated 2D spectrum exhibits the effects of the ET processes through the presence of ET transition peaks along the Ω1\Omega_1 axis, as well as the decay of echo signals.Comment: 28 pages, 8 figures; J. Chem. Phys. 137 (2012

    A competing order scenario of two-gap behavior in hole doped cuprates

    Full text link
    Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature TcT_c, while that in the antinodal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig

    An approach toward the successful supernova explosion by physics of unstable nuclei

    Full text link
    We study the explosion mechanism of collapse-driven supernovae by numerical simulations with a new nuclear EOS based on unstable nuclei. We report new results of simulations of general relativistic hydrodynamics together with the Boltzmann neutrino-transport in spherical symmetry. We adopt the new data set of relativistic EOS and the conventional set of EOS (Lattimer-Swesty EOS) to examine the influence on dynamics of core-collapse, bounce and shock propagation. We follow the behavior of stalled shock more than 500 ms after the bounce and compare the evolutions of supernova core.Comment: 4 pages, 2 figures, contribution to Nuclei in the Cosmos 8, to appear in Nucl. Phys.
    • 

    corecore