115 research outputs found

    Elastic Green's Function of Icosahedral Quasicrystals

    Full text link
    The elastic theory of quasicrystals considers, in addition to the normal displacement field, three phason degrees of freedom. We present an approximative solution for the elastic Green's function of icosahedral quasicrystals, assuming that the coupling between the phonons and phasons is small.Comment: 8 pages, 4 figures included, latex. To be published in The European Physical Journal

    Tiling models for metadislocations in AlPdMn approximants

    Full text link
    The AlPdMn quasicrystal approximants xi, xi', and xi'_n of the 1.6 nm decagonal phase and R, T, and T_n of the 1.2 nm decagonal phase can be viewed as arrangements of cluster columns on two-dimensional tilings. We substitute the tiles by Penrose rhombs and show, that alternative tilings can be constructed by a simple cut and projection formalism in three dimensional hyperspace. It follows that in the approximants there is a phasonic degree of freedom, whose excitation results in the reshuffling of the clusters. We apply the tiling model for metadislocations, which are special textures of partial dislocations.Comment: 7 pages, 2 figures, Proceedings of International Conference on Quasicrystals

    Dynamic fracture of icosahedral model quasicrystals: A molecular dynamics study

    Full text link
    Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were interpreted as clusters of atoms. These are significant structural units of quasicrystals. The experiments of Ebert et al. imply that they are also stable physical entities, a property controversially discussed currently. For a clarification we performed the first large scale fracture simulations on three-dimensional complex binary systems. We studied the propagation of mode I cracks in an icosahedral model quasicrystal by molecular dynamics techniques at low temperature. In particular we examined how the shape of the cleavage plane is influenced by the clusters inherent in the model and how it depends on the plane structure. Brittle fracture with no indication of dislocation activity is observed. The crack surfaces are rough on the scale of the clusters, but exhibit constant average heights for orientations perpendicular to high symmetry axes. From detailed analyses of the fractured samples we conclude that both, the plane structure and the clusters, strongly influence dynamic fracture in quasicrystals and that the clusters therefore have to be regarded as physical entities.Comment: 10 pages, 12 figures, for associated avi files, see http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/emitted_soundwaves.avi and http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/dynamic_fracture.av

    Topological defects in spinor condensates

    Full text link
    We investigate the structure of topological defects in the ground states of spinor Bose-Einstein condensates with spin F=1 or F=2. The type and number of defects are determined by calculating the first and second homotopy groups of the order-parameter space. The order-parameter space is identified with a set of degenerate ground state spinors. Because the structure of the ground state depends on whether or not there is an external magnetic field applied to the system, defects are sensitive to the magnetic field. We study both cases and find that the defects in zero and non-zero field are different.Comment: 10 pages, 1 figure. Published versio

    Anomalous Rashba spin splitting in two-dimensional hole systems

    Full text link
    It has long been assumed that the inversion asymmetry-induced Rashba spin splitting in two-dimensional (2D) systems at zero magnetic field is proportional to the electric field that characterizes the inversion asymmetry of the confining potential. Here we demonstrate, both theoretically and experimentally, that 2D heavy hole systems in accumulation layer-like single heterostructures show the opposite behavior, i.e., a decreasing, but nonzero electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure
    • …
    corecore