22,365 research outputs found

    Orbital elements of barium stars formed through a wind accretion scenario

    Get PDF
    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for publication in A &

    Low-field magnetotransport in graphene cavity devices

    Full text link
    Confinement and edge structures are known to play significant roles in electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we have observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We have also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.Comment: 13 pages, 5 figure

    Robust Feature-Preserving Mesh Denoising Based on Consistent Sub-Neighborhoods

    Get PDF
    published_or_final_versio

    Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly

    Full text link
    Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczek's method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be described by an infinite collection of the (1+1)--dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)--dimensional black body radiation at the Hawking temperature.Comment: 4 pages, no figure, 3nd revsion with one reference adde

    Tunable Surface Conductivity in Bi2Se3 Revealed in Diffusive Electron Transport

    Full text link
    We demonstrate that the weak antilocalization effect can serve as a convenient method for detecting decoupled surface transport in topological insulator thin films. In the regime where a bulk Fermi surface coexists with the surface states, the low field magnetoconductivity is described well by the Hikami-Larkin-Nagaoka equation for single component transport of non-interacting electrons. When the electron density is lowered, the magnetotransport behavior deviates from the single component description and strong evidence is found for independent conducting channels at the bottom and top surfaces. The magnetic-field-dependent part of corrections to conductivity due to the Zeeman energy is shown to be negligible despite non-negligible electron-electron interactions.Comment: 5 pages, 3 figures. For comments and questions, please contact: [email protected]
    • …
    corecore