19,993 research outputs found
The Low Column Density Lyman-alpha Forest
We develop an analytical method based on the lognormal approximation to
compute the column density distribution of the Lyman-alpha forest in the low
column density limit. We compute the column density distributions for six
different cosmological models and found that the standard, COBE-normalized CDM
model cannot fit the observations of the Lyman-alpha forest at z=3. The
amplitude of the fluctuations in that model has to be lowered by a factor of
almost 3 to match observations. However, the currently viable cosmological
models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model
with 20% neutrinos, and the low-amplitude Standard CDM model are all in
agreement with observations, to within the accuracy of our approximation, for
the value of the cosmological baryon density at or higher than the old Standard
Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of
the ionizing radiation intensity. With the low value for the baryon density
inferred by Hogan & Rugers (1996), the models can only marginally match
observations.Comment: three postscript figures included, submitted to ApJ
Ion collection by oblique surfaces of an object in a transversely-flowing strongly-magnetized plasma
The equations governing a collisionless obliquely-flowing plasma around an
ion-absorbing object in a strong magnetic field are shown to have an exact
analytic solution even for arbitrary (two-dimensional) object-shape, when
temperature is uniform, and diffusive transport can be ignored. The solution
has an extremely simple geometric embodiment. It shows that the ion collection
flux density to a convex body's surface depends only upon the orientation of
the surface, and provides the theoretical justification and calibration of
oblique `Mach-probes'. The exponential form of this exact solution helps
explain the approximate fit of this function to previous numerical solutions.Comment: Four pages, 2 figures. Submitted to Phys. Rev. Letter
Recovery of continuous wave squeezing at low frequencies
We propose and demonstrate a system that produces squeezed vacuum using a
pair of optical parametric amplifiers. This scheme allows the production of
phase sidebands on the squeezed vacuum which facilitate phase locking in
downstream applications. We observe strong, stably locked, continuous wave
vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative
resonator configuration to overcome low frequency squeezing degradation caused
by the optical parametric amplifiers.Comment: 9 pages, 4 figure
The Evolution of Bias - Generalized
Fry (1996) showed that galaxy bias has the tendency to evolve towards unity,
i.e. in the long run, the galaxy distribution tends to trace that of matter.
Generalizing slightly Fry's reasoning, we show that his conclusion remains
valid in theories of modified gravity (or equivalently, complex clustered dark
energy). This is not surprising: as long as both galaxies and matter are
subject to the same force, dynamics would drive them towards tracing each
other. This holds, for instance, in theories where both galaxies and matter
move on geodesics. This relaxation of bias towards unity is tempered by cosmic
acceleration, however: the bias tends towards unity but does not quite make it,
unless the formation bias were close to unity. Our argument is extended in a
straightforward manner to the case of a stochastic or nonlinear bias. An
important corollary is that dynamical evolution could imprint a scale
dependence on the large scale galaxy bias. This is especially pronounced if
non-standard gravity introduces new scales to the problem: the bias at
different scales relaxes at different rates, the larger scales generally more
slowly and retaining a longer memory of the initial bias. A consistency test of
the current (general relativity + uniform dark energy) paradigm is therefore to
look for departure from a scale independent bias on large scales. A simple way
is to measure the relative bias of different populations of galaxies which are
at different stages of bias relaxation. Lastly, we comment on the possibility
of directly testing the Poisson equation on cosmological scales, as opposed to
indirectly through the growth factor.Comment: 8 pages, 2 figures. References added. Accepted for publication in
Physical Review
Microlensing of gamma ray bursts by stars and MACHOs
The microlensing interpretation of the optical afterglow of GRB 000301C seems
naively surprising, since a simple estimate of the stellar microlensing rate
gives less than one in four hundred for a flat Omega_Lambda=0.7 cosmology,
whereas one event was seen in about thirty afterglows. Considering baryonic
MACHOs making up half of the baryons in the universe, the microlensing
probability per burst can be roughly 5% for a GRB at redshift z=2. We explore
two effects that may enhance the probability of observing microlensed gamma-ray
burst afterglows: binary lenses and double magnification bias. We find that the
consideration of binary lenses can increase the rate only at the ~15% level. On
the other hand, because gamma-ray bursts for which afterglow observations exist
are typically selected based on fluxes at widely separated wavebands which are
not necessarily well correlated (e.g. localization in X-ray, afterglow in
optical/infrared), magnification bias can operate at an enhanced level compared
to the usual single-bias case. We find that existing estimates of the slope of
the luminosity function of gamma-ray bursts, while as yet quite uncertain,
point to enhancement factors of more than three above the simple estimates of
the microlensing rate. We find that the probability to observe at least one
microlensing event in the sample of 27 measured afterglows can be 3-4% for
stellar lenses, or as much as 25 Omega_lens for baryonic MACHOs. We note that
the probability to observe at least one event over the available sample of
afterglows is significant only if a large fraction of the baryons in the
universe are condensed in stellar-mass objects. (ABRIDGED)Comment: 22 pages, 4 figures, 2 table
Schubert Polynomials for the affine Grassmannian of the symplectic group
We study the Schubert calculus of the affine Grassmannian Gr of the
symplectic group. The integral homology and cohomology rings of Gr are
identified with dual Hopf algebras of symmetric functions, defined in terms of
Schur's P and Q-functions. An explicit combinatorial description is obtained
for the Schubert basis of the cohomology of Gr, and this is extended to a
definition of the affine type C Stanley symmetric functions. A homology Pieri
rule is also given for the product of a special Schubert class with an
arbitrary one.Comment: 45 page
Extremely Small Sizes for Faint z~2-8 Galaxies in the Hubble Frontier Fields: A Key Input For Establishing their Volume Density and UV Emissivity
We provide the first observational constraints on the sizes of the faintest
galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing
radiation from faint galaxies likely drives cosmic reionization, and the HFF
initiative provides a key opportunity to find such galaxies. Yet, we cannot
really assess their ionizing emissivity without a robust measurement of their
sizes, since this is key to quantifying both their prevalence and the faint-end
slope to the UV luminosity function. Here we provide the first such size
constraints with 2 new techniques. The first utilizes the fact that the
detectability of highly-magnified galaxies as a function of shear is very
dependent on a galaxy's size. Only the most compact galaxies will remain
detectable in regions of high shear (vs. a larger detectable size range for low
shear), a phenomenon we carefully quantify using simulations. Remarkably,
however, no correlation is found between the surface density of faint galaxies
and the predicted shear, using 87 faint high-magnification mu>10 z~2-8 galaxies
seen behind the first 4 HFF clusters. This can only be the case if such faint
(~-15 mag) galaxies have significantly smaller sizes than luminous galaxies. We
constrain their half-light radii to be <~30 mas (<160-240 pc). As a 2nd size
probe, we rotate and stack 26 faint high-magnification sources along the major
shear axis. Less elongation is found than even for objects with an intrinsic
half-light radius of 10 mas. Together these results indicate that extremely
faint z~2-8 galaxies have near point-source profiles in the HFF dataset
(half-light radii conservatively <30 mas and likely 5-10 mas). These results
suggest smaller completeness corrections and hence much lower volume densities
for faint z~2-8 galaxies and shallower faint-end slopes than have been derived
in many recent studies (by factors of ~2-3 and by dalpha>~0.1-0.3).Comment: 19 pages, 15 figures, 3 tables, accepted for publication in Ap
Higher-order non-symmetric counterterms in pure Yang-Mills theory
We analyze the restoration of the Slavnov-Taylor (ST) identities for pure
massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization
scheme with IR regulator. We obtain the most general form of the action-like
part of the symmetric regularized action, obeying the relevant ST identities
and all other relevant symmetries of the model, to all orders in the loop
expansion. We also give a cohomological characterization of the fulfillment of
BPHZL IR power-counting criterion, guaranteeing the existence of the limit
where the IR regulator goes to zero. The technique analyzed in this paper is
needed in the study of the restoration of the ST identities for those models,
like the MSSM, where massless particles are present and no invariant
regularization scheme is known to preserve the full set of ST identities of the
theory.Comment: Final version published in the journa
- …