14,083 research outputs found
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
In this paper, we extend Parikh' work to the non-stationary black hole. As an
example of the non-stationary black hole, we study the tunnelling effect and
Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its
mass parameter. We view Hawking radiation as a tunnelling process across the
event horizon and calculate the tunnelling probability. We find that the result
is different from Parikh's work because is the function of
Bondi mass m(v)
Eigenstates of Paraparticle Creation Operators
Eigenstates of the parabose and parafermi creation operators are constructed.
In the Dirac contour representation, the parabose eigenstates correspond to the
dual vectors of the parabose coherent states. In order , conserved-charge
parabose creation operator eigenstates are also constructed. The contour forms
of the associated resolutions of unity are obtained.Comment: 14 pages, LaTex file, no macros, no figure
The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall
We study the reliability of the reconstruction method which uses a modelling
of the redshift distortions of the two-point correlation function to estimate
the pairwise peculiar velocity dispersion of galaxies. In particular, the
dependence of this quantity on different models for the infall velocity is
examined for the Las Campanas Redshift Survey. We make extensive use of
numerical simulations and of mock catalogs derived from them to discuss the
effect of a self-similar infall model, of zero infall, and of the real infall
taken from the simulation. The implications for two recent discrepant
determinations of the pairwise velocity dispersion for this survey are
discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8
pages with 2 figures include
Quantum decoherence in noninertial frames
Quantum decoherence, which appears when a system interacts with its
environment in an irreversible way, plays a fundamental role in the description
of quantum-to-classical transitions and has been successfully applied in some
important experiments. Here, we study the decoherence in noninertial frames for
the first time. It is shown that the decoherence and loss of the entanglement
generated by the Unruh effect will influence each other remarkably. It is
interesting to note that in the case of the total system under decoherence, the
sudden death of entanglement may appear for any acceleration. However, in the
case of only Rob's qubit underging decoherence sudden death may only occur when
the acceleration parameter is greater than a "critical point."Comment: 4 pages, 3 figure
Viscous evolution of point vortex equilibria: The collinear state
When point vortex equilibria of the 2D Euler equations are used as initial
conditions for the corre- sponding Navier-Stokes equations (viscous), typically
an interesting dynamical process unfolds at short and intermediate time scales,
before the long time single peaked, self-similar Oseen vortex state dom-
inates. In this paper, we describe the viscous evolution of a collinear three
vortex structure that cor- responds to an inviscid point vortex fixed
equilibrium. Using a multi-Gaussian 'core-growth' type of model, we show that
the system immediately begins to rotate unsteadily, a mechanism we attribute to
a 'viscously induced' instability. We then examine in detail the qualitative
and quantitative evolution of the system as it evolves toward the long-time
asymptotic Lamb-Oseen state, showing the sequence of topological bifurcations
that occur both in a fixed reference frame, and in an appropriately chosen
rotating reference frame. The evolution of passive particles in this viscously
evolving flow is shown and interpreted in relation to these evolving streamline
patterns.Comment: 17 pages, 15 figure
Scaling properties of the redshift power spectrum: theoretical models
We report the results of an analysis of the redshift power spectrum
in three typical Cold Dark Matter (CDM) cosmological models, where
is the cosine of the angle between the wave vector and the line-of-sight.
Two distinct biased tracers derived from the primordial density peaks of
Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are
considered in addition to the pure dark matter models. Based on a large set of
high resolution simulations, we have measured the redshift power spectrum for
the three tracers from the linear to the nonlinear regime. We investigate the
validity of the relation - guessed from linear theory - in the nonlinear regime
where
is the real space power spectrum, and equals . The
damping function which should generally depend on , , and
, is found to be a function of only one variable
. This scaling behavior extends into the nonlinear regime,
while can be accurately expressed as a Lorentz function - well known from
linear theory - for values . The difference between
and the pairwise velocity dispersion defined by the 3-D peculiar velocity of
the simulations (taking ) is about 15%. Therefore is a
good indicator of the pairwise velocity dispersion. The exact functional form
of depends on the cosmological model and on the bias scheme. We have given
an accurate fitting formula for the functional form of for the models
studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current
The Duke storage ring is a dedicated driver for the storage ring based
oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source
(HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA
per bunch for various operations and accelerator physics studies. High
performance operations of the FEL and gamma-ray source require a stable
electron beam orbit, which has been realized by the global orbit feedback
system. As a critical part of the orbit feedback system, the electron beam
position monitors (BPMs) are required to be able to precisely measure the
electron beam orbit in a wide range of the single-bunch current. However, the
high peak voltage of the BPM pickups associated with high single-bunch current
degrades the performance of the BPM electronics, and can potentially damage the
BPM electronics. A signal conditioning method using low pass filters is
developed to reduce the peak voltage to protect the BPM electronics, and to
make the BPMs capable of working with a wide range of single-bunch current.
Simulations and electron beam based tests are performed. The results show that
the Duke storage ring BPM system is capable of providing precise orbit
measurements to ensure highly stable FEL and HIGS operations
- …