51,072 research outputs found
Enhanced Ferromagnetic Stability in Cu Doped Passivated GaN Nanowires
Density functional calculations are performed to investigate the room
temperature ferromagnetism in GaN:Cu nanowires (NWs). Our results indicate that
two Cu dopants are most stable when they are near each other. Compared to bulk
GaN:Cu, we find that magnetization and ferromagnetism in Cu doped NWs is
strongly enhanced because the band width of the Cu td band is reduced due to
the 1D nature of the NW. The surface passivation is shown to be crucial to
sustain the ferromagnetism in GaN:Cu NWs. These findings are in good agreement
with experimental observations and indicate that ferromagnetism in this type of
systems can be tuned by controlling the size or shape of the host materials.Comment: Nano Lett., ASAP Article, 10.1021/nl080261
Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China
We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning
Strange meson-nucleon states in the quark potential model
The quark potential model and resonating group method are used to investigate
the bound states and/or resonances. The model potential consists of
the t-channel and s-channel one-gluon exchange potentials and the confining
potential with incorporating the QCD renormalization correction and the
spin-orbital suppression effect in it. It was shown in our previous work that
by considering the color octet contribution, use of this model to investigate
the low energy elastic scattering leads to the results which are in pretty
good agreement with the experimental data. In this paper, the same model and
method are employed to calculate the masses of the bound systems.
For this purpose, the resonating group equation is transformed into a standard
Schr\"odinger equation in which a nonlocal effective interaction
potential is included. Solving the Schr\"odinger equation by the variational
method, we are able to reproduce the masses of some currently concerned
states and get a view that these states possibly exist as
molecular states. For the system, the same calculation gives no support to
the existence of the resonance which was announced
recently.Comment: 15 pages, 4 figure
Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne
The four-dimensional Dirac-Schr\"odinger equation satisfied by
quark-antiquark bound states is derived from Quantum Chromodynamics. Different
from the Bethe-Salpeter equation, the equation derived is a kind of first-order
differential equations of Schr\"odinger-type in the position space. Especially,
the interaction kernel in the equation is given by two different closed
expressions. One expression which contains only a few types of Green's
functions is derived with the aid of the equations of motion satisfied by some
kinds of Green's functions. Another expression which is represented in terms of
the quark, antiquark and gluon propagators and some kinds of proper vertices is
derived by means of the technique of irreducible decomposition of Green's
functions. The kernel derived not only can easily be calculated by the
perturbation method, but also provides a suitable basis for nonperturbative
investigations. Furthermore, it is shown that the four-dimensinal
Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous
three-dimensional forms in the equal-time Lorentz frame and the
Dirac-Schr\"odinger equation can be reduced to an equivalent
Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To
show the applicability of the closed expressions derived and to demonstrate the
equivalence between the two different expressions of the kernel, the t-channel
and s-channel one gluon exchange kernels are chosen as an example to show how
they are derived from the closed expressions. In addition, the connection of
the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed
- …