3,859 research outputs found

    Disorder-driven splitting of the conductance peak at the Dirac point in graphene

    Full text link
    The electronic properties of a bricklayer model, which shares the same topology as the hexagonal lattice of graphene, are investigated numerically. We study the influence of random magnetic-field disorder in addition to a strong perpendicular magnetic field. We found a disorder-driven splitting of the longitudinal conductance peak within the narrow lowest Landau band near the Dirac point. The energy splitting follows a relation which is proportional to the square root of the magnetic field and linear in the disorder strength. We calculate the scale invariant peaks of the two-terminal conductance and obtain the critical exponents as well as the multifractal properties of the chiral and quantum Hall states. We found approximate values ν≈2.5\nu\approx 2.5 for the quantum Hall states, but ν=0.33±0.1\nu=0.33\pm 0.1 for the divergence of the correlation length of the chiral state at E=0 in the presence of a strong magnetic field. Within the central n=0n=0 Landau band, the multifractal properties of both the chiral and the split quantum Hall states are the same, showing a parabolic f[α(s)]f[\alpha(s)] distribution with α(0)=2.27±0.02\alpha(0)=2.27\pm 0.02. In the absence of the constant magnetic field, the chiral critical state is determined by α(0)=2.14±0.02\alpha(0)=2.14\pm 0.02

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2−D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent ν=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    Conductivity in a symmetry broken phase: Spinless fermions with 1/d1/d corrections

    Full text link
    The dynamic conductivity σ(ω)\sigma(\omega) of strongly correlated electrons in a symmetry broken phase is investigated in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple cubic lattice. The investigated symmetry broken phase is the charge density wave (CDW) with wave vector Q=(π,π,π)†Q=(\pi,\pi,\pi)^\dagger which occurs at half-filling. The calculations are based on the high dimensional approach, i.e. an expansion in the inverse dimension 1/d1/d is used. The finite dimensionality is accounted for by the inclusion of linear terms in 1/d1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the non symmetry broken and in the symmetry broken phase (AB-CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limit T→0T \to 0 due to a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivity σ(ω)\sigma(\omega) the energy gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d1/d lead to an excitonic resonance lying within the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review B15, in press (October/November 1996) depending on the printer/screen driver, it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them printed separatel

    Critical conductance of two-dimensional chiral systems with random magnetic flux

    Full text link
    The zero temperature transport properties of two-dimensional lattice systems with static random magnetic flux per plaquette and zero mean are investigated numerically. We study the two-terminal conductance and its dependence on energy, sample size, and magnetic flux strength. The influence of boundary conditions and of the oddness of the number of sites in the transverse direction is also studied. We confirm the existence of a critical chiral state in the middle of the energy band and calculate the critical exponent nu=0.35 +/- 0.03 for the divergence of the localization length. The sample averaged scale independent critical conductance _c turns out to be a function of the amplitude of the flux fluctuations whereas the variance of the respective conductance distributions appears to be universal. All electronic states outside of the band center are found to be localized.Comment: to appear in Phys. Rev.

    Structure of anthra[9,1- cd

    Full text link

    Molecular line opacity of LiCl in the mid-infrared spectra of brown dwarfs

    Full text link
    We present a complete line list for the X 1Sigma+ electronic ground state of LiCl computed using fully quantum-mechanical techniques. This list includes transition energies and oscillator strengths in the spectral region 0.3-39,640.7 cm-1 for all allowed rovibrational transitions in absorption within the electronic ground state. The calculations were performed using an accurate hybrid potential constructed from a spectral inversion fit of experimental data and from recent multi-reference single- and double-excitation configuration interaction calculations. The line list was incorporated into the stellar atmosphere code PHOENIX to compute spectra for a range of young to old T dwarf models. The possibility of observing a signature of LiCl in absorption near 15.8 microns is addressed and the proposal to use this feature to estimate the total lithium elemental abundance for these cool objects is discussed.Comment: 8 pages, 2 figures, 1 table. Accepted for publication in ApJ 613, Sept. 20 200

    The Molecular Line Opacity of MgH in Cool Stellar Atmospheres

    Full text link
    A new, complete, theoretical rotational and vibrational line list for the A-X electronic transition in MgH is presented. The list includes transition energies and oscillator strengths for all possible allowed transitions and was computed using the best available theoretical potential energies and dipole transition moment function with the former adjusted to account for experimental data. The A-X line list, as well as new line lists for the B'-X and the X-X (pure rovibrational) transitions, were included in comprehensive stellar atmosphere models for M, L, and T dwarfs and solar-type stars. The resulting spectra, when compared to models lacking MgH, show that MgH provides significant opacity in the visible between 4400 and 5600 Angstrom. Further, comparison of the spectra obtained with the current line list to spectra obtained using the line list constructed by Kurucz (1993) show that the Kurucz list significantly overestimates the opacity due to MgH particularly for the bands near 5150 and 4800 Angstrom with the discrepancy increasing with decreasing effective temperature.Comment: 10 pages, 4 figures, 3 table
    • …
    corecore