3,859 research outputs found
Disorder-driven splitting of the conductance peak at the Dirac point in graphene
The electronic properties of a bricklayer model, which shares the same
topology as the hexagonal lattice of graphene, are investigated numerically. We
study the influence of random magnetic-field disorder in addition to a strong
perpendicular magnetic field. We found a disorder-driven splitting of the
longitudinal conductance peak within the narrow lowest Landau band near the
Dirac point. The energy splitting follows a relation which is proportional to
the square root of the magnetic field and linear in the disorder strength. We
calculate the scale invariant peaks of the two-terminal conductance and obtain
the critical exponents as well as the multifractal properties of the chiral and
quantum Hall states. We found approximate values for the
quantum Hall states, but for the divergence of the
correlation length of the chiral state at E=0 in the presence of a strong
magnetic field. Within the central Landau band, the multifractal
properties of both the chiral and the split quantum Hall states are the same,
showing a parabolic distribution with .
In the absence of the constant magnetic field, the chiral critical state is
determined by
Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates
The critical two-terminal conductance and the spatial fluctuations of
critical eigenstates are investigated for a disordered two dimensional model of
non-interacting electrons subject to spin-orbit scattering (Ando model). For
square samples, we verify numerically the relation between critical conductivity and
the fractal information dimension of the electron wave function, . Through a detailed numerical scaling analysis of the two-terminal
conductance we also estimate the critical exponent that
governs the quantum phase transition.Comment: IOP Latex, 7 figure
Conductivity in a symmetry broken phase: Spinless fermions with corrections
The dynamic conductivity of strongly correlated electrons in
a symmetry broken phase is investigated in the present work. The model
considered consists of spinless fermions with repulsive interaction on a simple
cubic lattice. The investigated symmetry broken phase is the charge density
wave (CDW) with wave vector which occurs at
half-filling. The calculations are based on the high dimensional approach, i.e.
an expansion in the inverse dimension is used. The finite dimensionality
is accounted for by the inclusion of linear terms in and the true finite
dimensional DOS. Special care is paid to the setup of a conserving
approximation in the sense of Baym/Kadanoff without inconsistencies. The
resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the
non symmetry broken and in the symmetry broken phase (AB-CDW). The
dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in
the limit due to a subtle cancellation of diverging mobility and
vanishing DOS. In the dynamic conductivity the energy gap
induced by the symmetry breaking is clearly discernible. In addition, the
vertex corrections of order lead to an excitonic resonance lying within
the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review
B15, in press (October/November 1996) depending on the printer/screen driver,
it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them
printed separatel
Critical conductance of two-dimensional chiral systems with random magnetic flux
The zero temperature transport properties of two-dimensional lattice systems
with static random magnetic flux per plaquette and zero mean are investigated
numerically. We study the two-terminal conductance and its dependence on
energy, sample size, and magnetic flux strength. The influence of boundary
conditions and of the oddness of the number of sites in the transverse
direction is also studied. We confirm the existence of a critical chiral state
in the middle of the energy band and calculate the critical exponent nu=0.35
+/- 0.03 for the divergence of the localization length. The sample averaged
scale independent critical conductance _c turns out to be a function of the
amplitude of the flux fluctuations whereas the variance of the respective
conductance distributions appears to be universal. All electronic states
outside of the band center are found to be localized.Comment: to appear in Phys. Rev.
Molecular line opacity of LiCl in the mid-infrared spectra of brown dwarfs
We present a complete line list for the X 1Sigma+ electronic ground state of
LiCl computed using fully quantum-mechanical techniques. This list includes
transition energies and oscillator strengths in the spectral region
0.3-39,640.7 cm-1 for all allowed rovibrational transitions in absorption
within the electronic ground state. The calculations were performed using an
accurate hybrid potential constructed from a spectral inversion fit of
experimental data and from recent multi-reference single- and double-excitation
configuration interaction calculations. The line list was incorporated into the
stellar atmosphere code PHOENIX to compute spectra for a range of young to old
T dwarf models. The possibility of observing a signature of LiCl in absorption
near 15.8 microns is addressed and the proposal to use this feature to estimate
the total lithium elemental abundance for these cool objects is discussed.Comment: 8 pages, 2 figures, 1 table. Accepted for publication in ApJ 613,
Sept. 20 200
The Molecular Line Opacity of MgH in Cool Stellar Atmospheres
A new, complete, theoretical rotational and vibrational line list for the A-X
electronic transition in MgH is presented. The list includes transition
energies and oscillator strengths for all possible allowed transitions and was
computed using the best available theoretical potential energies and dipole
transition moment function with the former adjusted to account for experimental
data. The A-X line list, as well as new line lists for the B'-X and the X-X
(pure rovibrational) transitions, were included in comprehensive stellar
atmosphere models for M, L, and T dwarfs and solar-type stars. The resulting
spectra, when compared to models lacking MgH, show that MgH provides
significant opacity in the visible between 4400 and 5600 Angstrom. Further,
comparison of the spectra obtained with the current line list to spectra
obtained using the line list constructed by Kurucz (1993) show that the Kurucz
list significantly overestimates the opacity due to MgH particularly for the
bands near 5150 and 4800 Angstrom with the discrepancy increasing with
decreasing effective temperature.Comment: 10 pages, 4 figures, 3 table
- …