1,372 research outputs found

    Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence

    Full text link
    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached, when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown at one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Covariant EBK quantization of the electromagnetic two-body problem

    Full text link
    We discuss a method to transform the covariant Fokker action into an implicit two-degree-of-freedom Hamiltonian for the electromagnetic two-body problem with arbitrary masses. This dynamical system appeared 100 years ago and it was popularized in the 1940's by the still incomplete Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. The Hamiltonian formalism is then used to motivate an EBK quantization based on the classical trajectories with a non-perturbative formula that predicts energies free of infinities.Comment: 21 page

    Motions and world-line deviations in Einstein-Maxwell theory

    Get PDF
    We examine the motion of charged particles in gravitational and electro-magnetic background fields. We study in particular the deviation of world lines, describing the relative acceleration between particles on different space-time trajectories. Two special cases of background fields are considered in detail: (a) pp-waves, a combination of gravitational and electro-magnetic polarized plane waves travelling in the same direction; (b) the Reissner-Nordstr{\o}m solution. We perform a non-trivial check by computing the precession of the periastron for a charged particle in the Reissner-Nordstr{\o}m geometry both directly by solving the geodesic equation, and using the world-line deviation equation. The results agree to the order of approximation considered.Comment: 23 pages, no figure

    Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model

    Full text link
    We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assumptions and approximations made in previous papers. The resulting partial differential equations for the vehicle density and average velocity contain a non-local interaction term which is very favorable for a fast and robust numerical integration, so that several thousand freeway kilometers can be simulated in real-time. The model parameters can be easily calibrated by means of empirical data. They are directly related to the quantities characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magnitude. Therefore, they allow to investigate the influences of varying street and weather conditions or freeway control measures. Simulation results for realistic model parameters are in good agreement with the diverse non-linear dynamical phenomena observed in freeway traffic.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.theo2.physik.uni-stuttgart.de/treiber.htm

    Towards a Macroscopic Modelling of the Complexity in Traffic Flow

    Full text link
    We present a macroscopic traffic flow model that extends existing fluid-like models by an additional term containing the second derivative of the safe velocity. Two qualitatively different shapes of the safe velocity are explored: a conventional Fermi-type function and a function exhibiting a plateau at intermediate densities. The suggested model shows an extremely rich dynamical behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.

    Deterministic approach to microscopic three-phase traffic theory

    Full text link
    Two different deterministic microscopic traffic flow models, which are in the context of the Kerner's there-phase traffic theory, are introduced. In an acceleration time delay model (ATD-model), different time delays in driver acceleration associated with driver behaviour in various local driving situations are explicitly incorporated into the model. Vehicle acceleration depends on local traffic situation, i.e., whether a driver is within the free flow, or synchronized flow, or else wide moving jam traffic phase. In a speed adaptation model (SA-model), vehicle speed adaptation occurs in synchronized flow depending on driving conditions. It is found that the ATD- and SA-models show spatiotemporal congested traffic patterns that are adequate with empirical results. In the ATD- and SA-models, the onset of congestion in free flow at a freeway bottleneck is associated with a first-order phase transition from free flow to synchronized flow; moving jams emerge spontaneously in synchronized flow only. Differences between the ATD- and SA-models are studied. A comparison of the ATD- and SA-models with stochastic models in the context of three phase traffic theory is made. A critical discussion of earlier traffic flow theories and models based on the fundamental diagram approach is presented.Comment: 40 pages, 14 figure

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX

    Steady state solutions of hydrodynamic traffic models

    Full text link
    We investigate steady state solutions of hydrodynamic traffic models in the absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different types of inhomogeneous steady state solutions. The seven solutions include those that have been reported previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the solutions should be common to a wide class of traffic models. The results are discussed in connection with the universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure

    Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition

    Full text link
    Recently, hysteretic transitions to `synchronized traffic' with high values of both density and traffic flow were observed on German freeways [B. S. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997)]. We propose a macroscopic traffic model based on a gas-kinetic approach that can explain this phase transition. The results suggest a general mechanism for the formation of probably the most common form of congested traffic.Comment: With corrected formula (3). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm
    corecore