29,535 research outputs found

    RG flow of the Polyakov-loop potential: First status report

    Get PDF
    We study SU(2) Yang-Mills theory at finite temperature in the framework of the functional renormalization group. We concentrate on the effective potential for the Polyakov loop which serves as an order parameter for confinement. In this first status report, we focus on the behaviour of the effective Polyakov-loop potential at high temperatures. In addition to the standard perturbative result, our findings provide information about the ``RG improved'' backreactions of Polyakov-loop fluctuations on the potential. We demonstrate that these fluctuations establish the convexity of the effective potential.Comment: 10 pages, 2 figure

    Volume Dependence of the Pion Mass from Renormalization Group Flows

    Full text link
    We investigate finite volume effects on the pion mass and the pion decay constant with renormalization group (RG) methods in the framework of a phenomenological model for QCD. An understanding of such effects is important in order to interpret results from lattice QCD and extrapolate reliably from finite lattice volumes to infinite volume. We consider the quark-meson-model in a finite Euclidean 3+1 dimensional volume. In order to break chiral symmetry in the finite volume, we introduce a small current quark mass. In the corresponding effective potential for the meson fields, the chiral O(4)-symmetry is broken explicitly, and the sigma and pion fields are treated individually. Using the proper-time renormalization group, we derive renormalization group flow equations in the finite volume and solve these equations in the approximation of a constant expectation value. We calculate the volume dependence of pion mass and pion decay constant and compare our results with recent results from chiral perturbation theory in finite volume.Comment: 9 pages, 3 figures, talk given at "Hadronic Physics 2004 - Joint meeting Heidelberg-Liege-Paris-Rostock", to appear in the proceedings, AIP conference serie

    Fusion of strings vs. percolation and the transition to the quark-gluon plasma

    Get PDF
    In most of the models of hadronic collisions the number of exchanged colour strings grows with energy and atomic numbers of the projectile and target. At high string densities interaction between them should melt them into the quark-gluon plasma state. It is shown that under certain assumptions about the the string interaction, a phase transition to the quark gluon plasma indeed takes place in the system of many colour strings. It may be of the first or second order (percolation), depending on the particular mechanism of the interaction. The critical string density is about unity in both cases. The critical density may have been already reached in central Pb-Pb collisions at 158 A GeV.Comment: 16 pages, 3 Postscript figure
    • …
    corecore