79,663 research outputs found
Recommended from our members
The pupillary response of cephalopods
This paper provides the first detailed description of the time courses of light-evoked pupillary constriction for two species of cephalopods, Sepia officinalis (a cuttlefish) and Eledone cirrhosa (an octopus). The responses are much faster than hitherto reported, full contraction in Sepia taking less than 1 s, indicating it is among the most rapid pupillary responses in the animal kingdom. We also describe the dependence of the degree of pupil constriction on the level of ambient illumination and show considerable variability between animals. Furthermore, both Sepia and Eledone lack a consensual light-evoked pupil response. Pupil dilation following darkness in Sepia is shown to be very variable, often occurring within a second but at other times taking considerably longer. This may be the result of extensive light-independent variations in pupil diameter in low levels of illumination
Classes of confining gauge field configurations
We present a numerical method to compute path integrals in effective SU(2)
Yang-Mills theories. The basic idea is to approximate the Yang-Mills path
integral by summing over all gauge field configurations, which can be
represented as a linear superposition of a small number of localized building
blocks. With a suitable choice of building blocks many essential features of
SU(2) Yang-Mills theory can be reproduced, particularly confinement. The
analysis of our results leads to the conclusion that topological charge as well
as extended structures are essential elements of confining gauge field
configurations.Comment: 18 pages, 16 figures, several sections adde
Digital processing system for developing countries
An effort was undertaken to perform simple digital processing tasks using pre-existing general purpose digital computers. An experimental software package, LIGMALS, was obtained and modified for this purpose. The resulting software permits basic processing tasks to be performed including level slicing, gray mapping and ratio processing. The experience gained in this project indicates a possible direction which may be used by other developing countries to obtain digital processing capabilities
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
Three-dimensional pantograph for use in hazardous environments
Material measurement device is used with radioactive probes which can be approached only to distance of 3 feet. Tracer-following unit is capable of precisely controlled movement in X-Y-Z planes. Pantograph is usable in industrial processes involving chemical corrosives, poisons, and bacteriological hazards, as well as nuclear applications
Chemistry of the Spring Waters of the Ouachita Mountains Excluding Hot Springs, Arkansas
This report is based on the chemical analysis of the waters from 93 springs and 9 wells. Springs, when free from metal plumbing, provide an uncontaminated source of the ground water and it was desired to obtain water uncontaminated with metals. A few wells were added to the list, usually because of their unique location in the sampling grid
- …