5,697 research outputs found

    SINGLE-MODE FIBRES WITH LOW DISPERSION AND LOW LOSS FOR LED-SIGNALS

    Get PDF

    Processing and Transmission of Information

    Get PDF
    Contains reports on three research projects

    Model development for the estimation of urban air temperature based on surface temperature and NDVI - a case study in Szeged

    Get PDF
    Predictive models for urban air temperature (Tair) were developed by using urban land surface temperature (LST) retrieved from Landsat-8 and MODIS data, NDVI retrieved from Landsat-8 data and Tair measured by 24 climatological stations in Szeged. The investigation focused on summer period (June−September) during 2016−2019 in Szeged. The relationship between Tair and LST was analyzed by calculating Pearson correlation coefficient, root-mean-square error and mean-absolute error using the data of 2017−2019, then unary (LST) and binary (LST and NDVI) linear regression models were developed for estimating Tair. The data in 2016 were used to validate the accuracy of the models. Correlation analysis indicated that there were strong correlations during the nighttime and relatively weaker ones during the daytime. The errors between Tair and LSTMODIS-Night was the smallest, followed by LSTMODIS-Day and LSTLandsat-8 respectively. The validation results showed that all models could perform well, especially during nighttime with an error of less than 1.5℃. However, the addition of NDVI into the linear regression models did not significantly improve the accuracy of the models, and even had a negative effect. Finally, the influencing factors and temporal and spatial variability of the correlation between Tair and LST were analyzed. LSTLandsat-8 had a larger original error with Tair, but the regression model based on Landsat-8 had a stronger ability to reduce errors

    Sensitive VLBI Continuum and H I Absorption Observations of NGC 7674: First Scientific Observations with the Combined Array VLBA, VLA & Arecibo

    Full text link
    We present phase-referenced VLBI observations of the radio continuum emission from, and the H I 21 cm absorption toward, the Luminous Infrared Galaxy NGC 7674. The observations were carried out at 1380 MHz using the VLBA, the phased VLA, and theArecibo radio telescope. These observations constitute the first scientific use of the Arecibo telescope in a VLBI observation with the VLBA. The high- and low-resolution radio continuum images reveal several new continuum structures in the nuclear region of this galaxy. At ~100 mas resolution, we distinguish six continuum structures extending over 1.4 arcsec, with a total flux density of 138 mJy. Only three of these structures were known previously. All these structures seem to be related to AGN activity. At the full resolution of the array, we only detect two of the six continuum structures. Both are composed of several compact components with brightness temperatures on the order of 10710^{7} K. While it is possible that one of these compact structures could host an AGN, they could also be shock-like features formed by the interaction of the jet with compact interstellar clouds in the nuclear region of this galaxy. Complex H I absorption is detected with our VLBI array at both high and low angular resolution. Assuming that the widest H I feature is associated with a rotating H I disk or torus feeding a central AGN, we estimate an enclosed dynamical mass of ~7 x 10^7 M_sun, comparable to the value derived from the hidden broad HÎČ\beta emission in this galaxy. The narrower H I lines could represent clumpy neutral hydrogen structures in the H I torus. The detection of H I absorption toward some of the continuum components, and its absence toward others, suggest an inclined H I disk or torus in the central region of NGC 7674.Comment: 37 pages, 11 figures. ApJ accepted. To appear in the Nov. 10, 2003 issue of ApJ. Please use the PDF version if the postscript doesn't show the figure

    On the Nature of Intrinsic Absorption in Reddened Seyfert 1 Galaxies

    Get PDF
    We discuss the origin of the ``dusty lukewarm absorber'', which we previously identified in the reddened Seyfert 1 galaxies NGC 3227 and Akn 564. This absorber is characterized by saturated UV absorption lines (C IV, N V) near the systemic velocity of the host galaxy, and is likely responsible for reddening both the continuum and the emission lines (including those from the narrow-line region) from these Seyferts. From a large sample of Seyfert 1 galaxies, we find that continuum reddening (as measured by UV color) tends to increase with inclination of the host galaxy. Furthermore, reddened, inclined Seyfert galaxies observed at moderate to high spectral resolution all show evidence for dusty lukewarm absorbers. We suggest that these absorbers lie in the plane of the host galaxy at distances > 100 pc from the nucleus, and are physically distinct from the majority of intrinsic absorbers that are outflowing from the nucleus.Comment: 14 pages, including 2 figures, accepted for publication in the Astrophysical Journal (Letters

    Detailed Radio Spectra of Selected Compact Sources in the Nucleus of M82

    Get PDF
    We have determined detailed radio spectra for 26 compact sources in the starburst nucleus of M82, between 74 and 1.3 cm. Seventeen show low-frequency turnovers. One other has a thermal emission spectrum, and we identify it as an HII region. The low frequency turnovers are due to absorption by the interstellar gas in M82. New information on the AGN candidate 44.01+595, shows it to have a non-thermal falling powerlaw spectrum at the highest frequencies, and that it is strongly absorbed below 2 GHz. We derive large magnetic fields in the supernova remnants, of order 1-2 milliGauss, hence large pressures in the sources suggest that the brightest ones are either expanding or are strongly confined by a dense interstellar medium. From the largest source in our sample, we derive a supernova rate of 0.016 SN/yr.Comment: 19 pages, 7 tables, 29 figures, LaTeX, requires AAS macros v. 4.0. To appear in ApJ July 20, 199

    The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies

    Get PDF
    We use the difference (delta) between the position angles of the nuclear radio emission and the host galaxy major axis to investigate the distribution of the angle (beta) between the axes of the nuclear accretion disk and the host galaxy disk in Seyfert galaxies. We provide a critical appraisal of the quality of all measurements, and find that the data are limited by observational uncertainties and biases, such as the well known deficiency of Seyfert galaxies of high inclination. There is weak evidence that the distribution of delta for Seyfert 2 galaxies may be different (at the 90% confidence level) from a uniform distribution, while the Seyfert 1 delta distribution is not significantly different from a uniform distribution or from the Seyfert 2 delta distribution. The cause of the possible non-uniformity in the distribution of delta for Seyfert 2 galaxies is discussed. Seyfert nuclei in late-type spiral galaxies may favor large values of delta (at the ~96% confidence level), while those in early-type galaxies show a more or less random distribution of delta. This may imply that the nuclear accretion disk in non-interacting late-type spirals tends to align with the stellar disk, while that in early-type galaxies is more randomly oriented, perhaps as a result of accretion following a galaxy merger. We point out that biases in the distribution of inclination translate to biased estimates of beta in the context of the unified scheme. When this effect is taken into account, the distributions of beta for all Seyferts together, and of Seyfert 1's and 2's separately, agree with the hypothesis that the radio jets are randomly oriented with respect to the galaxy disk. The data are consistent with the expectations of the unified scheme, but do not demand it.Comment: To appear in the Astrophysical Journal, Vol 516 #1, May 1, 1999. Corrected figure placement within pape

    The Seyfert-Starburst Connection in X-rays. II. Results and Implications

    Get PDF
    We present the results of X-ray imaging and spectroscopic analysis of a sample of Seyfert 2 galaxies that contain starbursts, based on their optical and UV characteristics. These composite galaxies exhibit extended, soft, thermal X-ray emission, which we attribute to their starburst components. Comparing their X-ray and far-infrared properties with ordinary Seyfert and starburst galaxies, we identify the spectral characteristics of their various intrinsic emission sources. The observed far-infrared emission of the composite galaxies may be associated almost exclusively with star formation, rather than the active nucleus. The ratio of the hard X-ray luminosity to the far-infrared and [O III] 5007 luminosity distinguishes most of these composite galaxies from ``pure'' Seyfert 2 galaxies, while their total observed hard X-ray luminosity distinguishes them from ``pure'' starbursts. The hard nuclear X-ray source is generally heavily absorbed (N_H > 10^{23} cm^{-2}) in the composite galaxies. Based on these results, we suggest that the interstellar medium of the nuclear starburst is a significant source of absorption. The majority of the sample are located in groups or are interacting with other galaxies, which may trigger the starburst or allow rapid mass infall to the central black hole, or both. We conclude that starbursts are energetically important in a significant fraction of active galaxies, and starbursts and active galactic nuclei may be part of a common evolutionary sequence.Comment: 16 pages including 8 figures and 5 tables; to appear in the ApJ, Mar. 10, 200

    Electrohydrodynamic Jet Printing of 1D Photonic Crystals: Part II—Optical Design and Reflectance Characteristics

    Full text link
    Additive manufacturing systems that can arbitrarily deposit multiple materials into precise, 3D spaces spanning the micro‐ to nanoscale are enabling novel structures with useful thermal, electrical, and optical properties. In this companion paper set, electrohydrodynamic jet (e‐jet) printing is investigated for its ability in depositing multimaterial, multilayer films with microscale spatial resolution and nanoscale thickness control, with a demonstration of this capability in creating 1D photonic crystals (1DPCs) with response near the visible regime. Transfer matrix simulations are used to evaluate different material classes for use in a printed 1DPC, and commercially available photopolymers with varying refractive indices (n = 1.35 to 1.70) are selected based on their relative high index contrast and fast curing times. E‐jet printing is then used to experimentally demonstrate pixelated 1DPCs with individual layer thicknesses between 80 and 200 nm, square pixels smaller than 40 ”m across, with surface roughness less than 20 nm. The reflectance characteristics of the printed 1DPCs are measured using spatially selective microspectroscopy and correlated to the transfer matrix simulations. These results are an important step toward enabling cost‐effective, custom‐fabrication of advanced imaging devices or photonic crystal sensing platforms.Electrohydrodynamic jet printing is used to create patterned arrays of multimaterial photopolymer 1D photonic crystals. Patterns are demonstrated with in‐plane dimensions below 40 ”m, layer thicknesses less than 100 nm, and surface root mean square roughness below 20 nm. This novel fabrication method can enable rapid, reconfigurable manufacturing of custom photonic sensing arrays.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163389/2/admt202000431-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163389/1/admt202000431.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163389/3/admt202000431_am.pd
    • 

    corecore