25,466 research outputs found

    Controlling internal barrier in low loss BaTiO3 supercapacitors

    Get PDF
    Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite

    Fermion Production in Strong Magnetic Field and its Astrophysical Implications

    Full text link
    We calculate the effective potential of a strong magnetic field induced by fermions with anomalous magnetic moments which couple to the electromagnetic field in the form of the Pauli interaction. For a uniform magnetic field, we find the explicit form of the effective potential. It is found that the non-vanishing imaginary part develops for a magnetic field stronger than a critical field and has a quartic form which is quite different from the exponential form of the Schwinger process. We also consider a linear magnetic field configuration as an example of inhomogeneous magnetic fields. We find that the imaginary part of the effective potential is nonzero even below the critical field and shows an exponentially decreasing behavior with respect to the inverse of the magnetic field gradient, which is the non-perturbative characteristics analogous to the Schwinger process. These results imply the instability of the strong magnetic field to produce fermion pairs as a purely magnetic effect. The possible applications to the astrophysical phenomena with strong magnetic field are also discussed.Comment: 13 pages, 3 figure

    Real Estate Income and Value Cycles: A Model of Market Dynamics

    Get PDF
    We develop a theoretical real estate cycles model linking economic fundamentals to real estate income and value. We estimate and test an econometric model specification, based on the theoretical model, using MSA level data for twenty office markets in the United States. Our major conclusion is that cities that exhibit seemingly different cyclical office market behavior may be statistically characterized by our three-parameter econometric specification. The parameters are MSA-specific amplitude, through the CAP rate, cycle duration (peak-to-peak), via the rate of partial adjustments to changing expectations about stabilized NOI and the market trend.

    Synthesis and Activity of Six-Membered Cyclic Alkyl Amino Carbene–Ruthenium Olefin Metathesis Catalysts

    Get PDF
    Ru–cyclic alkyl amino carbene (Ru–CAAC) olefin metathesis catalysts perform extraordinarily in metathesis macrocyclization and ethenolysis, but previous studies have been limited to the use of five-membered CAAC (CAAC-5) ligands. In this work, we synthesized a different group of ruthenium catalysts with more σ-donating and π-accepting six-membered CAAC (CAAC-6) ligands, and their metathesis activity was probed through initiation studies, ring-closing metathesis (RCM), cross-metathesis, and ethenolysis. These catalysts display higher initiation rates than analogous Ru–CAAC-5 complexes but demonstrate lower activity in RCM and ethenolysis

    New Hamiltonian formalism and quasi-local conservation equations of general relativity

    Full text link
    I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the (2,2) formalism without assuming isometries. In this formalism, quasi-local energy, linear momentum, and angular momentum are identified from the four Einstein's equations of the divergence-type, and are expressed geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The associated quasi-local balance equations are spelled out, and the corresponding fluxes are found to assume the canonical form of energy-momentum flux as in standard field theories. The remaining non-divergence-type Einstein's equations turn out to be the Hamilton's equations of motion, which are derivable from the {\it non-vanishing} Hamiltonian by the variational principle. The Hamilton's equations are the evolution equations along the out-going null geodesic whose {\it affine} parameter serves as the time function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasi-local quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the corresponding fluxes become the Bondi fluxes. The quasi-local angular momentum turns out to be zero for any two-surface in the flat Minkowski spacetime. I also present a candidate for quasi-local {\it rotational} energy which agrees with the Carter's constant in the asymptotic region of the Kerr spacetime. Finally, a simple relation between energy-flux and angular momentum-flux of a generic gravitational radiation is discussed, whose existence reflects the fact that energy-flux always accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
    corecore