42,514 research outputs found

    The private capacity of quantum channels is not additive

    Full text link
    Recently there has been considerable activity on the subject of additivity of various quantum channel capacities. Here, we construct a family of channels with sharply bounded classical, hence private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero quantum) capacity erasure channel, becomes larger than the previous classical capacity. As a consequence, we can conclude for the first time that the classical private capacity is non-additive. In fact, in our construction even the quantum capacity of the tensor product of two channels can be greater than the sum of their individual classical private capacities. We show that this violation occurs quite generically: every channel can be embedded into our construction, and a violation occurs whenever the given channel has larger entanglement assisted quantum capacity than (unassisted) classical capacity.Comment: 4+4 pages, 2 eps figures. V2 has title and abstract changed; its new structure reflects the final version of a main paper plus appendices containing mathematical detail

    Contact Atomic Structure and Electron Transport Through Molecules

    Full text link
    Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a LUMO-like resonance peak near the Fermi energy. In the non-equilibrium properties, the resonance peak manifests itself in a large negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.Comment: 8 pages, 6 figure

    The magnetic dipole transitions in the (cbˉ)(c\bar{b}) binding system

    Full text link
    The magnetic dipole transitions between the vector mesons BcB_c^* and their relevant pseudoscalar mesons BcB_c (BcB_c, BcB_c^*, Bc(2S)B_c(2S), Bc(2S)B_c^*(2S), Bc(3S)B_c(3S) and Bc(3S)B_c^*(3S) etc, the binding states of (cbˉ)(c\bar{b}) system) of the BcB_c family are interesting. To see the `hyperfine' splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (cbˉ)(c\bar{b}) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson BcB_c^* mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons BcB_c accordingly. Considering the possibility to observe the vector mesons via the transitions at Z0Z^0 factory and the potentially usages of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. precisely to calculate the rates for the transitions such as decays BcBcγB_c^*\to B_c\gamma and BcBce+eB_c^*\to B_c e^+e^-, and particularly work in the Behte-Salpeter framework. In the estimate, as a typical example, we carefully investigate the dependance of the rate Γ(BcBcγ)\Gamma(B_c^*\to B_c\gamma) on the mass difference ΔM=MBcMBc\Delta M=M_{B_c^*}-M_{B_c} as well.Comment: 10 pages, 2 figures, 1 tabl

    A general condition of inflationary cosmology on trans-Planckian physics

    Full text link
    We consider a more general initial condition satisfying the minimal uncertainty relationship. We calculate the power spectrum of a simple model in inflationary cosmology. The results depend on perturbations generated below a fundamental scale, e.g. the Planck scale.Comment: 7 pages, References adde

    Search for Bc(ns)B_c(ns) via the Bc(ns)Bc(ms)π+πB_c(ns)\to B_c(ms)\pi^+\pi^- transition at LHCb and Z0Z_0 factory

    Full text link
    It is interesting to study the characteristics of the whole family of BcB_c which contains two different heavy flavors. LHC and the proposed Z0Z^0 factory provide an opportunity because a large database on the BcB_c family will be achieved. BcB_c and its excited states can be identified via their decay modes. As suggested by experimentalists, Bc(ns)Bc+γB_c^*(ns)\to B_c+\gamma is not easy to be clearly measured, instead, the trajectories of π+\pi^+ and π\pi^- occurring in the decay of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- (n>mn>m) can be unambiguously identified, thus the measurement seems easier and more reliable, therefore this mode is more favorable at early running stage of LHCb and the proposed Z0Z^0 factory. In this work, we calculate the rate of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- in terms of the QCD multipole-expansion and the numerical results indicate that the experimental measurements with the luminosity of LHC and Z0Z^0 factory are feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics, Mechanics & Astronomy (Science in China Series G

    Extraction of Plumes in Turbulent Thermal Convection

    Full text link
    We present a scheme to extract information about plumes, a prominent coherent structure in turbulent thermal convection, from simultaneous local velocity and temperature measurements. Using this scheme, we study the temperature dependence of the plume velocity and understand the results using the equations of motion. We further obtain the average local heat flux in the vertical direction at the cell center. Our result shows that heat is not mainly transported through the central region but instead through the regions near the sidewalls of the convection cell.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Possible DDˉD\bar{D} and BBˉB\bar{B} Molecular states in a chiral quark model

    Full text link
    We perform a systematic study of the bound state problem of DDˉD\bar{D} and BBˉB\bar{B} systems by using effective interaction in our chiral quark model. Our results show that both the interactions of DDˉD\bar{D} and BBˉB\bar{B} states are attractive, which consequently result in IG(JPC)=0+(0++)I^G(J^{PC})=0^+(0^{++}) DDˉD\bar{D} and BBˉB\bar{B} bound states.Comment: arXiv admin note: substantial text overlap with arXiv:1204.395
    corecore