1,007 research outputs found

    Chaotic dephasing in a double-slit scattering experiment

    Full text link
    We design a computational experiment in which a quantum particle tunnels into a billiard of variable shape and scatters out of it through a double-slit opening on the billiard's base. The interference patterns produced by the scattered probability currents for a range of energies are investigated in relation to the billiard's geometry which is connected to its classical integrability. Four billiards with hierarchical integrability levels are considered: integrable, pseudo-integrable, weak-mixing and strongly chaotic. In agreement with the earlier result by Casati and Prosen [1], we find the billiard's integrability to have a crucial influence on the properties of the interference patterns. In the integrable case most experiment outcomes are found to be consistent with the constructive interference occurring in the usual double-slit experiment. In contrast to this, non-integrable billiards typically display asymmetric interference patterns of smaller visibility characterized by weakly correlated wave function values at the two slits. Our findings indicate an intrinsic connection between the classical integrability and the quantum dephasing, responsible for the destruction of interference

    Quantum transport in semiconductor quantum dot superlattices: electron-phonon resonances and polaron effects

    Full text link
    Electron transport in periodic quantum dot arrays in the presence of interactions with phonons was investigated using the formalism of nonequilibrium Green's functions. The self-consistent Born approximation was used to model the self-energies. Its validity was checked by comparison with the results obtained by direct diagonalization of the Hamiltonian of interacting electrons and longitudinal optical phonons. The nature of charge transport at electron -- phonon resonances was investigated in detail and contributions from scattering and coherent tunnelling to the current were identified. It was found that at larger values of the structure period the main peak in the current -- field characteristics exhibits a doublet structure which was shown to be a transport signature of polaron effects. At smaller values of the period, electron -- phonon resonances cause multiple peaks in the characteristics. A phenomenological model for treatment of nonuniformities of a realistic quantum dot ensemble was also introduced to estimate the influence of nonuniformities on current -- field characteristics

    Fluctuations and Entanglement spectrum in quantum Hall states

    Full text link
    The measurement of quantum entanglement in many-body systems remains challenging. One experimentally relevant fact about quantum entanglement is that in systems whose degrees of freedom map to free fermions with conserved total particle number, exact relations hold relating the Full Counting Statistics associated with the bipartite charge fluctuations and the sequence of R\' enyi entropies. We draw a correspondence between the bipartite charge fluctuations and the entanglement spectrum, mediated by the R\' enyi entropies. In the case of the integer quantum Hall effect, we show that it is possible to reproduce the generic features of the entanglement spectrum from a measurement of the second charge cumulant only. Additionally, asking whether it is possible to extend the free fermion result to the Μ=1/3\nu=1/3 fractional quantum Hall case, we provide numerical evidence that the answer is negative in general. We further address the problem of quantum Hall edge states described by a Luttinger liquid, and derive expressions for the spectral functions of the real space entanglement spectrum at a quantum point contact realized in a quantum Hall sample.Comment: Final Version. Invited Article, for Special Issue of JSTAT on "Quantum Entanglement in Condensed Matter Physics

    Learning Mixtures of Gaussians in High Dimensions

    Full text link
    Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the learning problem asks to estimate the means and the covariance matrices of these Gaussians. This learning problem arises in many areas ranging from the natural sciences to the social sciences, and has also found many machine learning applications. Unfortunately, learning mixture of Gaussians is an information theoretically hard problem: in order to learn the parameters up to a reasonable accuracy, the number of samples required is exponential in the number of Gaussian components in the worst case. In this work, we show that provided we are in high enough dimensions, the class of Gaussian mixtures is learnable in its most general form under a smoothed analysis framework, where the parameters are randomly perturbed from an adversarial starting point. In particular, given samples from a mixture of Gaussians with randomly perturbed parameters, when n > {\Omega}(k^2), we give an algorithm that learns the parameters with polynomial running time and using polynomial number of samples. The central algorithmic ideas consist of new ways to decompose the moment tensor of the Gaussian mixture by exploiting its structural properties. The symmetries of this tensor are derived from the combinatorial structure of higher order moments of Gaussian distributions (sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop new tools for bounding smallest singular values of structured random matrices, which could be useful in other smoothed analysis settings

    Understanding the Solar Sources of In Situ Observations

    Full text link
    The solar wind can, to a good approximation be described as a two‐component flow with fast, tenuous, quiescent flow emanating from coronal holes, and slow, dense and variable flow associated with the boundary between open and closed magnetic fields. In spite of its simplicity, this picture naturally produces a range of complex heliospheric phenomena, including the presence, location, and orientation of corotating interaction regions and their associated shocks. In this study, we apply a two‐step mapping technique, incorporating a magnetohydrodynamic model of the solar corona, to bring in situ observations from Ulysses, WIND, and ACE back to the solar surface in an effort to determine some intrinsic properties of the quasi‐steady solar wind. In particular, we find that a “layer” of ∌35,000 km exists between the Coronal Hole Boundary (CHB) and the fast solar wind, where the wind is slow and variable. We also derive a velocity gradient within large polar coronal holes (that were present during Ulysses’ rapid latitude scan) as a function of distance from the CHB. We find that v = 713 km/s + 3.2 d, where d is the angular distance from the CHB boundary in degrees. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87654/2/79_1.pd
    • 

    corecore