528 research outputs found

    Electronic Highways in Bilayer Graphene

    Full text link
    Bilayer graphene with an interlayer potential difference has an energy gap and, when the potential difference varies spatially, topologically protected one-dimensional states localized along the difference's zero-lines. When disorder is absent, electronic travel directions along zero-line trajectories are fixed by valley Hall properties. Using the Landauer-B\"uttiker formula and the non-equilibrium Green's function technique we demonstrate numerically that collisions between electrons traveling in opposite directions, due to either disorder or changes in path direction, are strongly suppressed. We find that extremely long mean free paths of the order of hundreds of microns can be expected in relatively clean samples. This finding suggests the possibility of designing low power nanoscale electronic devices in which transport paths are controlled by gates which alter the inter-layer potential landscape.Comment: 8 pages, 5 figure

    Online Algorithms for Geographical Load Balancing

    Get PDF
    It has recently been proposed that Internet energy costs, both monetary and environmental, can be reduced by exploiting temporal variations and shifting processing to data centers located in regions where energy currently has low cost. Lightly loaded data centers can then turn off surplus servers. This paper studies online algorithms for determining the number of servers to leave on in each data center, and then uses these algorithms to study the environmental potential of geographical load balancing (GLB). A commonly suggested algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning for the current time by optimizing over a window of predicted future loads. We show that RHC performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however, we also prove that differences in propagation delays, servers, and electricity prices can cause RHC perform badly, So, we introduce variants of RHC that are guaranteed to perform as well in the face of such heterogeneity. These algorithms are then used to study the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to understand what portfolio of renewable energy is most effective

    Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene

    Full text link
    We demonstrate theoretically how local strains in graphene can be tailored to generate a valley polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure

    Valley-Hall Kink and Edge States in Multilayer Graphene

    Full text link
    We report on a theoretical study of one-dimensional (1D) states localized at few-layer graphene system ribbon edges, and at interfaces between few-layer graphene systems with different valley Hall conductivities. These 1D states are topologically protected when valley mixing is neglected. We address the influence on their properties of stacking arrangement, interface structure, and external electric field perpendicular to the layers. We find that 1D states are generally absent at multilayer ribbon armchair direction edges, but present irrespective of crystallographic orientation at any internal valley-Hall interface of an ABC stacked multilayer.Comment: 5 pages, 3 figure

    Current Flow in Random Resistor Networks: The Role of Percolation in Weak and Strong Disorder

    Full text link
    We study the current flow paths between two edges in a random resistor network on a L×LL\times L square lattice. Each resistor has resistance eaxe^{ax}, where xx is a uniformly-distributed random variable and aa controls the broadness of the distribution. We find (a) the scaled variable uL/aνu\equiv L/a^\nu, where ν\nu is the percolation connectedness exponent, fully determines the distribution of the current path length \ell for all values of uu. For u1u\gg 1, the behavior corresponds to the weak disorder limit and \ell scales as L\ell\sim L, while for u1u\ll 1, the behavior corresponds to the strong disorder limit with Ldopt\ell\sim L^{d_{\scriptsize opt}}, where dopt=1.22±0.01d_{\scriptsize opt} = 1.22\pm0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale ξaν\xi\sim a^\nu, below which strong disorder and critical percolation characterize the current path.Comment: 9 pages, 4 figure

    Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator

    Full text link
    We propose realizing the quantum anomalous Hall effect by proximity coupling graphene to an antiferromagnetic insulator that provides both broken time-reversal symmetry and spin-orbit coupling. We illustrate our idea by performing ab initio calculations for graphene adsorbed on the (111) surface of BiFeO3. In this case, we find that the proximity-induced exchange field in graphene is about 70 meV, and that a topologically nontrivial band gap is opened by Rashba spin-orbit coupling. The size of the gap depends on the separation between the graphene and the thin film substrate, which can be tuned experimentally by applying external pressure.Comment: 5pages, 5 figure

    A kriging model for dynamics of mechanical systems with revolute joint clearances

    Get PDF
    Over the past two decades, extensive work has been conducted on the dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, the analysis of revolute joint clearance is formulated in terms of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented and a simulation model is developed using the analysis/design software MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with an appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the joint clearance. In the modeling and simulation of the experimental setup and in the followed parametric study with a slightly revised system, both the Hertzian normal contact force model and a Coulomb-type friction force model were utilized. The kinetic coefficient of friction was chosen as constant throughout the study. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for the development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples with different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for the further analysis of the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.Fundação para a Ciência e a Tecnologia (FCT
    corecore