10,653 research outputs found

    Casimir pistons with hybrid boundary conditions

    Full text link
    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is reexamined for one to three-dimensional pistons in this paper. Especially, we consider Casimir pistons with hybrid boundary conditions, where the boundary condition on the piston is Neumann and those on other surfaces are Dirichlet. We show that the Casimir force on the piston is always repulsive, in contrast with the same problem where the boundary conditions are Dirichlet on all surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte

    Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene

    Full text link
    We demonstrate theoretically how local strains in graphene can be tailored to generate a valley polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure

    The quantum probability ranking principle for information retrieval

    Get PDF
    While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevanc

    Observed Tightening of Tropical Ascent in Recent Decades and Linkage to Regional Precipitation Changes

    Get PDF
    Climate models predict that the tropical ascending region should tighten under global warming, but observational quantification of the tightening rate is limited. Here we show that the observed spatial extent of the relatively moist, rainy and cloudy regions in the tropics associated with large‐scale ascent has been decreasing at a rate of −1%/decade (−5%/K) from 1979 to 2016, resulting from combined effects of interdecadal variability and anthropogenic forcings, with the former contributing more than the latter. The tightening of tropical ascent is associated with an increase in the occurrence frequency of extremely strong ascent, leading to an increase in the average precipitation rate in the top 1% of monthly rainfall in the tropics. At the margins of the convective zones such as the Southeast Amazonia region, the contraction of large‐scale ascent is related to a long‐term drying trend about −3.2%/decade in the past 38 years

    Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors

    Full text link
    Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition \~ 1 K were successfully prepared on silicon substrates by pulsed laser deposition from a stoichiometric MgB2 target. Contrary to previous reports, anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed without the requirement of Mg vapor or an Mg cap layer. This integration of superconducting MgB2 films on silicon may thus prove enabling in superconductor-semiconductor device applications. Images of surface morphology and cross-section profiles by scanning electron microscopy (SEM) show that the films have a uniform surface morphology and thickness. Energy dispersive spectroscopy (EDS) reveals these films were contaminated with oxygen, originating either from the growth environment or from sample exposure to air. The oxygen contamination may account for the low Tc for those in-situ annealed films, while the use of Si as the substrate does not result in a decrease in Tc as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images were blure

    Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature

    Full text link
    We study molecular para-hydrogen (p-H2{\rm H_{2}}) and ortho-deuterium (o-D2{\rm D_{2}}) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemann's ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-H2{\rm H_{2}}, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-H2{\rm H_{2}} solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid 4^{4}He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix ϱ1(r)\varrho_{1} (r) of solid p-H2{\rm H_{2}} possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure
    corecore