7,506 research outputs found

    Spin Fluctuation Induced Dephasing in a Mesoscopic Ring

    Get PDF
    We investigate the persistent current in a hybrid Aharonov-Bohm ring - quantum dot system coupled to a reservoir which provides spin fluctuations. It is shown that the spin exchange interaction between the quantum dot and the reservoir induces dephasing in the absence of direct charge transfer. We demonstrate an anomalous nature of this spin-fluctuation induced dephasing which tends to enhance the persistent current. We explain our result in terms of the separation of the spin from the charge degree of freedom. The nature of the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure

    Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot

    Full text link
    We study coherent charge transfer between an Aharonov-Bohm ring and a side-attached quantum dot. The charge fluctuation between the two sub-structures is shown to give rise to algebraic suppression of the persistent current circulating the ring as the size of the ring becomes relatively large. The charge fluctuation at resonance provides transition between the diamagnetic and the paramagnetic states. Universal scaling, crossover behavior of the persistent current from a continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure

    Properties of Central Caustics in Planetary Microlensing

    Full text link
    To maximize the number of planet detections, current microlensing follow-up observations are focusing on high-magnification events which have a higher chance of being perturbed by central caustics. In this paper, we investigate the properties of central caustics and the perturbations induced by them. We derive analytic expressions of the location, size, and shape of the central caustic as a function of the star-planet separation, ss, and the planet/star mass ratio, qq, under the planetary perturbative approximation and compare the results with those based on numerical computations. While it has been known that the size of the planetary caustic is \propto \sqrt{q}, we find from this work that the dependence of the size of the central caustic on qq is linear, i.e., \propto q, implying that the central caustic shrinks much more rapidly with the decrease of qq compared to the planetary caustic. The central-caustic size depends also on the star-planet separation. If the size of the caustic is defined as the separation between the two cusps on the star-planet axis (horizontal width), we find that the dependence of the central-caustic size on the separation is \propto (s+1/s). While the size of the central caustic depends both on ss and q, its shape defined as the vertical/horizontal width ratio, R_c, is solely dependent on the planetary separation and we derive an analytic relation between R_c and s. Due to the smaller size of the central caustic combined with much more rapid decrease of its size with the decrease of q, the effect of finite source size on the perturbation induced by the central caustic is much more severe than the effect on the perturbation induced by the planetary caustic. Abridged.Comment: 5 pages, 4 figures, ApJ accepte

    A reconfigurable microfluidics platform for microparticle separation and fluid mixing

    Get PDF
    Microfluidics is an engineering tool used to control and manipulate fluid flows, with practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research. However, microfluidic platforms typically lack the ability to create a fluidic duct, having an arbitrary flow path, and to change the path as needed without additional design and fabrication processes. To address this challenge, we present a simple yet effective approach for facile, on-demand reconfiguration of microfluidic channels using flexible polymer tubing. The tubing provides both a well-defined, cross-sectional geometry to allow reliable fluidic operation and excellent flexibility to achieve a high degree of freedom for reconfiguration of flow pathways. We demonstrate that microparticle separation and fluid mixing can be successfully implemented by reconfiguring the shape of the tubing. The tubing is coiled around a 3D-printed barrel to make a spiral microchannel with a constant curvature for inertial separation of microparticles. Multiple knots are also made in the tubing to create a highly tortuous flow path, which induces transverse secondary flows, Dean flows, and, thus, enhances the mixing of fluids. The reconfigurable microfluidics approach, with advantages including low-cost, simplicity, and ease of use, can serve as a promising complement to conventional microfabrication methods, which require complex fabrication processes with expensive equipment and lack a degree of freedom for reconfiguration.ope

    Singlet fermionic dark matter

    Full text link
    We propose a renormalizable model of a fermionic dark matter by introducing a gauge singlet Dirac fermion and a real singlet scalar. The bridges between the singlet sector and the standard model sector are only the singlet scalar interaction terms with the standard model Higgs field. The singlet fermion couples to the standard model particles through the mixing between the standard model Higgs and singlet scalar and is naturally a weakly interacting massive particle (WIMP). The measured relic abundance can be explained by the singlet fermionic dark matter as the WIMP within this model. Collider implication of the singlet fermionic dark matter is also discussed. Predicted is the elastic scattering cross section of the singlet fermion into target nuclei for a direct detection of the dark matter. Search of the direct detection of the dark matter provides severe constraints on the parameters of our model.Comment: 12 pages, 7 figure

    Self-regulated mechanism of Plk1 localization to kinetochores: lessons from the Plk1-PBIP1 interaction

    Get PDF
    Mammalian polo-like kinase 1 (Plk1) has been studied extensively as a critical element in regulating various mitotic events during M-phase progression. Plk1 function is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Recent progress in our understanding of Plk1 localization to the centromeres shows that Plk1 self-regulates its initial recruitment by phosphorylating a centromeric component PBIP1 and generating its own PBD-binding site. Paradoxically, Plk1 also induces PBIP1 delocalization and degradation from the mitotic kinetochores late in the cell cycle, consequently permitting itself to bind to other kinetochore components. Thus, PBIP1-dependent self-recruitment of Plk1 to the interphase centromeres serves as a prelude to the efficient delivery of Plk1 itself to other kinetochore components whose interactions with Plk1 are vital for proper mitotic progression

    Raman Scattered He II λ\lambda 6545 Line in the Symbiotic Star V1016 Cygni

    Full text link
    We present a spectrum of the symbiotic star V1016 Cyg observed with the 3.6 m Canada-France-Hawaii Telescope, in order to illustrate a method to measure the covering factor of the neutral scattering region around the giant component with respect to the hot emission region around the white dwarf component. In the spectrum, we find broad wings around Hα\alpha and a broad emission feature around 6545A˚{\rm \AA} that is blended with the [N II]λ \lambda 6548 line. These two features are proposed to be formed by Raman scattering by atomic hydrogen, where the incident radiation is proposed to be UV continuum radiation around LyÎČ\beta in the former case and He II λ\lambda 1025 emission line arising from n=6→n=2n=6\to n=2 transitions for the latter feature. We remove the Hα\alpha wings by a template Raman scattering wing profile and subtract the [N II] λ\lambda 6548 line using the 3 times stronger [N II] λ\lambda 6583 feature in order to isolate the He II Raman scattered 6545 \AA line. We obtain the flux ratio F6545/F6560=0.24F_{6545}/F_{6560}=0.24 of the He II λ\lambda 6560 emission line and the 6545 \AA feature for V1016 Cyg. Under the assumption that the He II emission from this object is isotropic, this ratio is converted to the ratio Ί6545/Ί1025=0.17\Phi_{6545}/\Phi_{1025}=0.17 of the number of the incident photons and that of the scattered photons. This implies that the scattering region with H I column density NHI≄1020cm−2N_{HI}\ge 10^{20}{\rm cm^{-2}} covers 17 per cent of the emission region. By combining the presumed binary period ∌100\sim 100 yrs of this system we infer that a significant fraction of the slow stellar wind from the Mira component is ionized and that the scattering region around the Mira extends a few tens of AU, which is closely associated with the mass loss process of the Mira component.Comment: 12 pages, 6 figures, accepted for publication in Ap
    • 

    corecore