11,298 research outputs found
Unbinding Transition Induced by Osmotic Pressure in Relation to Unilamellar Vesicle Formation
Small-angle X-ray scattering and phase-contrast microscopy experiments were
performed to investigate the effect of the osmotic pressure on vesicle
formation in a dioleoylphosphatidylcholine (DOPC)/water/NaI system.
Multi-lamellar vesicles were formed when a pure lipid film was hydrated with an
aqueous solution of NaI. On the other hand, uni-lamellar vesicles (ULVs) were
formed when a lipid film mixed with an enough amount of NaI was hydrated. To
confirm the effect of the osmotic pressure due to NaI, a free-energy
calculation was performed. This result showed that the osmotic pressure induced
an unbinding transition on the hydration process, which resulted in ULV
formation
Orbital Properties of Sr3Ru2O7 and Related Ruthenates Probed by 17O-NMR
We report a site-separated O-NMR study of the layered perovskite
ruthenate SrRuO, which exhibits nearly two-dimensional transport
properties and itinerant metamagnetism at low temperatures. The local hole
occupancies and the spin densities in the oxygen orbitals are obtained by
means of tight-binding analyses of electric field gradients and anisotropic
Knight shifts. These quantities are compared with two other layered perovskite
ruthenates: the two-dimensional paramagnet SrRuO and the
three-dimensional ferromagnet SrRuO. The hole occupancies at the oxygen
sites are very large, about one hole per ruthenium atom. This is due to the
strong covalent character of the Ru-O bonding in this compound. The magnitude
of the hole occupancy might be related to the rotation or tilt of the RuO
octahedra. The spin densities at the oxygen sites are also large, 20-40% of the
bulk susceptibilities, but in contrast to the hole occupancies, the spin
densities strongly depend on the dimensionality. This result suggests that the
density-of-states at the oxygen sites plays an essential role for the
understanding of the complex magnetism found in the layered perovskite
ruthenates.Comment: 9 pages, 5 figures, to be published in Phys. Rev.
Development of Gundestrup-type Directional Langmuir Probe: Ion Flow Measurement in a Hyper-I Plasma
Quantum System under Periodic Perturbation: Effect of Environment
In many physical situations the behavior of a quantum system is affected by
interaction with a larger environment. We develop, using the method of
influence functional, how to deduce the density matrix of the quantum system
incorporating the effect of environment. After introducing characterization of
the environment by spectral weight, we first devise schemes to approximate the
spectral weight, and then a perturbation method in field theory models, in
order to approximately describe the environment. All of these approximate
models may be classified as extended Ohmic models of dissipation whose
differences are in the high frequency part.
The quantum system we deal with in the present work is a general class of
harmonic oscillators with arbitrary time dependent frequency. The late time
behavior of the system is well described by an approximation that employs a
localized friction in the dissipative part of the correlation function
appearing in the influence functional. The density matrix of the quantum system
is then determined in terms of a single classical solution obtained with the
time dependent frequency. With this one can compute the entropy, the energy
distribution function, and other physical quantities of the system in a closed
form.
Specific application is made to the case of periodically varying frequency.
This dynamical system has a remarkable property when the environmental
interaction is switched off: Effect of the parametric resonance gives rise to
an exponential growth of the populated number in higher excitation levels, or
particle production in field theory models. The effect of the environment is
investigated for this dynamical system and it is demonstrated that there existsComment: 55 pages, LATEX file plus 13 PS figures. A few calculational
mistatkes and corresponding figure 1 in field theory model corrected and some
changes made for publication in Phys. Rev.D (in press
Weak Magnetic Order in the Bilayered-hydrate NaCoOHO Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting NaCoO HO
A weak magnetic order was found in a non-superconducting bilayered-hydrate
NaCoOHO sample by a Co Nuclear Quadrupole Resonance
(NQR) measurement. The nuclear spin-lattice relaxation rate divided by
temperature shows a prominent peak at 5.5 K, below which a Co-NQR peak
splits due to an internal field at the Co site. From analyses of the Co NQR
spectrum at 1.5 K, the internal field is evaluated to be 300 Oe and is
in the -plane. The magnitude of the internal field suggests that the
ordered moment is as small as using the hyperfine coupling
constant reported previously. It is shown that the NQR frequency
correlates with magnetic fluctuations from measurements of NQR spectra and
in various samples. The higher- sample has the stronger
magnetic fluctuations. A possible phase diagram in NaCoOHO is depicted using and , in which the crystal distortion
along the c-axis of the tilted CoO octahedron is considered to be a
physical parameter. Superconductivity with the highest is seemingly
observed in the vicinity of the magnetic phase, suggesting strongly that the
magnetic fluctuations play an important role for the occurrence of the
superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
- …
