655 research outputs found
Electronic correlations and Hund's coupling effects in SrMoO revealed by photoemission spectroscopy
We investigate the electronic structure of a perovskite-type Pauli paramagnet
SrMoO3 (t2g2) thin film using hard x-ray photoemission spectroscopy and compare
the results to the realistic calculations that combine the density functional
theory within the local-density approximation (LDA) with the dynamical-mean
field theory (DMFT). Despite the clear signature of electron correlations in
the electronic specific heat, the narrowing of the quasiparticle bands is not
observed in the photoemission spectrum. This is explained in terms of the
characteristic effect of Hund's rule coupling for partially-filled t2g bands,
which induces strong quasiparticle renormalization already for values of
Hubbard interaction which are smaller than the bandwidth. The interpretation is
supported by additional model DMFT calculations including Hund's rule coupling,
that show renormalization of low-energy quasiparticles without affecting the
overall bandwidth. The photoemission spectra show additional spectral weight
around -2 eV that is not present in the LDA+DMFT. We interpret this weight as a
plasmon satellite, which is supported by measured Mo, Sr and Oxygen core-hole
spectra that all show satellites at this energy.Comment: 8 pages, 7 figure
Self-Energy Effects on the Low- to High-Energy Electronic Structure of SrVO3
The correlated electronic structure of SrVO3 has been investigated by
angle-resolved photoemission spectroscopy using in-situ prepared thin films.
Pronounced features of band renormalization have been observed: a sharp kink
~60 meV below the Fermi level (EF) and a broad so-called "high-energy kink"
~0.3 eV below EF as in the high-Tc cuprates although SrVO3 does not show
magnetic fluctuations. We have deduced the self-energy in a wide energy range
by applying the Kramers-Kronig relation to the observed spectra. The obtained
self-energy clearly shows a large energy scale of ~0.7 eV which is attributed
to electron-electron interaction and gives rise to the ~0.3 eV "kink" in the
band dispersion as well as the incoherent peak ~1.5eV below EF. The present
analysis enables us to obtain consistent picture both for the incoherent
spectra and the band renormalization.Comment: 5 pages, 3 figure
- …