2,657 research outputs found

    Solving the Dirac equation with nonlocal potential by Imaginary Time Step method

    Full text link
    The Imaginary Time Step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schr\"odinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schr\"odinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16^{16}O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained

    Time-aware metric embedding with asymmetric projection for successive POI recommendation

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Successive Point-of-Interest (POI) recommendation aims to recommend next POIs for a given user based on this user’s current location. Indeed, with the rapid growth of Location-based Social Networks (LBSNs), successive POI recommendation has become an important and challenging task, since it can help to meet users’ dynamic interests based on their recent check-in behaviors. While some efforts have been made for this task, most of them do not capture the following properties: 1) The transition between consecutive POIs in user check-in sequences presents asymmetric property, however existing approaches usually assume the forward and backward transition probabilities between a POI pair are symmetric. 2) Users usually prefer different successive POIs at different time, but most existing studies do not consider this dynamic factor. To this end, in this paper, we propose a time-aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for successive POI recommendation, which takes the above two properties into consideration. In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and POI-time relationships. Finally, the experimental results on two real-world datasets show MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall

    Emergence of Global Preferential Attachment From Local Interaction

    Full text link
    Global degree/strength based preferential attachment is widely used as an evolution mechanism of networks. But it is hard to believe that any individual can get global information and shape the network architecture based on it. In this paper, it is found that the global preferential attachment emerges from the local interaction models, including distance-dependent preferential attachment (DDPA) evolving model of weighted networks(M. Li et al, New Journal of Physics 8 (2006) 72), acquaintance network model(J. Davidsen et al, Phys. Rev. Lett. 88 (2002) 128701) and connecting nearest-neighbor(CNN) model(A. Vazquez, Phys. Rev. E 67 (2003) 056104). For DDPA model and CNN model, the attachment rate depends linearly on the degree or strength, while for acquaintance network model, the dependence follows a sublinear power law. It implies that for the evolution of social networks, local contact could be more fundamental than the presumed global preferential attachment. This is onsistent with the result observed in the evolution of empirical email networks.Comment: 9 pages, 5 figure

    On the Capacity Region of Reconfigurable Intelligent Surface Assisted Symbiotic Radios

    Full text link
    In this paper, we are interested in reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR) systems, where an RIS assists a primary transmission by passive beamforming and simultaneously acts as an information transmitter by periodically adjusting its reflecting coefficients. The above modulation scheme innately enables a new multiplicative multiple access channel (M-MAC), where the primary and secondary signals are superposed in a multiplicative and additive manner. To pursue the fundamental performance limits of the M-MAC, we focus on the characterization of the capacity region of such systems. Due to the passive nature of RISs, the transmitted signal of the RIS should satisfy the peak power constraint. Under this constraint at the RIS as well as the average power constraint at the primary transmitter (PTx), we analyze the capacity-achieving distributions of the transmitted signals and characterize the capacity region of the M-MAC. Then, theoretical analysis is performed to reveal insights into the RIS-assisted SR. It is observed that: 1) the capacity region of the M-MAC is strictly convex and larger than that of the conventional TDMA scheme; 2) the secondary transmission can achieve the maximum rate when the PTx transmits the constant envelope signals; 3) and the sum rate can achieve the maximum when the PTx transmits Gaussian signals and the RIS transmits the constant envelope signals. Finally, extensive numerical results are provided to evaluate the performance of the RIS-assisted SR and verify the accuracy of our theoretical analysis

    Network of Econophysicists: a weighted network to investigate the development of Econophysics

    Full text link
    The development of Econophysics is studied from the perspective of scientific communication networks. Papers in Econophysics published from 1992 to 2003 are collected. Then a weighted and directed network of scientific communication, including collaboration, citation and personal discussion, is constructed. Its static geometrical properties, including degree distribution, weight distribution, weight per degree, and betweenness centrality, give a nice overall description of the research works. The way we introduced here to measure the weight of connections can be used as a general one to construct weighted network.Comment: 6 pages, 7 figure

    Comparison of performance achievement award recognition with primary stroke center certification for acute ischemic stroke care.

    Get PDF
    BackgroundHospital certification and recognition programs represent 2 independent but commonly used systems to distinguish hospitals, yet they have not been directly compared. This study assessed acute ischemic stroke quality of care measure conformity by hospitals receiving Primary Stroke Center (PSC) certification and those receiving the American Heart Association's Get With The Guidelines-Stroke (GWTG-Stroke) Performance Achievement Award (PAA) recognition.Methods and resultsThe patient and hospital characteristics as well as performance/quality measures for acute ischemic stroke from 1356 hospitals participating in the GWTG-Stroke Program 2010-2012 were compared. Hospitals were classified as PAA+/PSC+ (hospitals n = 410, patients n = 169,302), PAA+/PSC- (n = 415, n = 129,454), PAA-/PSC+ (n = 88, n = 26,386), and PAA-/PSC- (n = 443, n = 75,565). A comprehensive set of stroke measures were compared with adjustment for patient and hospital characteristics. Patient characteristics were similar by PAA and PSC status but PAA-/PSC- hospitals were more likely to be smaller and nonteaching. Measure conformity was highest for PAA+/PSC+ and PAA+/PSC- hospitals, intermediate for PAA-/PSC+ hospitals, and lowest for PAA-/PSC- hospitals (all-or-none care measure 91.2%, 91.2%, 84.3%, and 76.9%, respectively). After adjustment for patient and hospital characteristics, PAA+/PSC+, PAA+/PSC-, and PAA-/PSC+ hospitals had 3.15 (95% CIs 2.86 to 3.47); 3.23 (2.93 to 3.56) and 1.72 (1.47 to 2.00), higher odds for providing all indicated stroke performance measures to patients compared with PAA-/PSC- hospitals.ConclusionsWhile both PSC certification and GWTG-Stroke PAA recognition identified hospitals providing higher conformity with care measures for patients hospitalized with acute ischemic stroke, PAA recognition was a more robust identifier of hospitals with better performance
    corecore