38 research outputs found

    Effect of sweet almond syrup versus methylphenidate in children with ADHD: A randomized triple-blind clinical trial

    Get PDF
    Background and purpose: Attention-deficit/hyperactivity disorder (ADHD) is one of the most common health disorders among children. Some patients do not respond to methylphenidate or cannot tolerate its side effects. Sweet almond syrup as a Persian Medicine preparation has been used for many years. This study aims to evaluate the efficacy and safety of sweet almond for ADHD children. Materials and methods: Fifty children aged 6-14 years with ADHD were recruited to the study. The participants were randomly assigned to two groups to receive either methylphenidate or sweet almond syrup. The outcomes were assessed using the Parent and Teacher ADHD Rating Scale every two weeks for 8 weeks. Results: Results showed that the two treatments had similar effects on symptom reduction in ADHD children. No significant differences were observed between the two groups (F=2.3, df=1, p=0.13, F=0.57, df=1, p=0.47). Conclusion: Sweet almond may be an effective treatment for ADHD children. © 2019 Elsevier Lt

    Empirical comparison of cross-platform normalization methods for gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous measurement of gene expression on a genomic scale can be accomplished using microarray technology or by sequencing based methods. Researchers who perform high throughput gene expression assays often deposit their data in public databases, but heterogeneity of measurement platforms leads to challenges for the combination and comparison of data sets. Researchers wishing to perform cross platform normalization face two major obstacles. First, a choice must be made about which method or methods to employ. Nine are currently available, and no rigorous comparison exists. Second, software for the selected method must be obtained and incorporated into a data analysis workflow.</p> <p>Results</p> <p>Using two publicly available cross-platform testing data sets, cross-platform normalization methods are compared based on inter-platform concordance and on the consistency of gene lists obtained with transformed data. Scatter and ROC-like plots are produced and new statistics based on those plots are introduced to measure the effectiveness of each method. Bootstrapping is employed to obtain distributions for those statistics. The consistency of platform effects across studies is explored theoretically and with respect to the testing data sets.</p> <p>Conclusions</p> <p>Our comparisons indicate that four methods, DWD, EB, GQ, and XPN, are generally effective, while the remaining methods do not adequately correct for platform effects. Of the four successful methods, XPN generally shows the highest inter-platform concordance when treatment groups are equally sized, while DWD is most robust to differently sized treatment groups and consistently shows the smallest loss in gene detection. We provide an R package, CONOR, capable of performing the nine cross-platform normalization methods considered. The package can be downloaded at <url>http://alborz.sdsu.edu/conor</url> and is available from CRAN.</p

    Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?

    Get PDF
    BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression

    Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Get PDF
    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article
    corecore