127 research outputs found

    Electrochemical characterisation of 3Y-TPZ-Fe2O3 composites

    Get PDF
    The influence of the addition of ferric oxide to 3Y-TZP on the conductivity and microstructure of sintered Y-stabilised tetragonal zirconia ceramics (3Y-TZP) was investigated. A comparison was made between two different dense 3Y-TZP¿¿-Fe2O3 composites. Compacts were made by pressureless sintering at 1150 °C or by sinterforging at 1000 °C and 100 MPa. The sinterforging process resulted in smaller zirconia and hematite grains and a higher monoclinic zirconia content as compared to the compact that was sintered pressureless. The high monoclinic content led to loss of ionic conductivity. The addition of ferric oxide caused electronic conductivity. The sinterforging resulted in a high concentration of metastable defects in the zirconia¿hematite composite, leading to a relatively high electronic conductivity. Heating above 380 °C caused irreversible loss of these defects and a large decrease in electronic conductivity

    Improvement of mechanical properties of zirconia-toughened alumina by sinter forging

    Get PDF
    ZTA powder with a composition of 85 wt% alumina/15 wt% zirconia was prepared by a gel precipitation method. Sinter forging was performed with this powder to enhance the mechanical properties of ZTA materials. The influence of processing flaws on mechanical properties of sinter forged materials and pressureless sintered materials was investigated. Sinter forging at 40 MPa effectively decreases process flaw sizes resulting in a homogeneous microstructure and improves the grain boundary structure because of large shear applied in this process. Sinter forging resulted in an increase in strength and toughness by a factor of 1.5–2 when compared with pressureless sintered compacts. The fracture energy is enhanced by a factor of two. The predominate mechanism for improvement of mechanical properties of these sinter-forged ZTA materials is grain boundary strengthening

    Sinter forging of zirconia toughened alumina

    Get PDF
    Sinter forging experiments have been carried out on powder compacts of zirconia toughened alumina (ZTA) Ceramics Alumina-15 wt% zirconia was prepared by a gel precipitation method and calcined at temperatures of 900 or 1100°C. Full densification of ZTA ceramics was obtained within 15 min at 1400°C and 40 MPa. A homogeneous microstructure can be observed with an alumina grain size of 0.7 mgrm and a zirconia grain size of 0.2 mgrm. Almost no textural evolution occurred in the microstructure. During sinter forging the densification behaviour of the compacts was improved by an effective shear strain, for which values of more than 100% could be obtained. As a result of the shear deformation the densification of ZTA in the agr alumina phase stage shifted to lower temperature. During pressureless sintering the gamma to agr alumina transformation temperature was dependent of the preceding calcination temperature, while during sinter forging this phase transformation was independent of calcination temperature and took place at a lower temperature

    Plasticity of nanocrystalline zirconia ceramics and composites

    Get PDF
    The deformation strain rate of nanocrystalline Y-TZP shows an increase by a factor 4 if the grain size decreases from 200 to 100 nm. Real superplastic deformation (strain rate > 10−4 s−1) is observed in these materials at relative low temperature (1100–1200 °C). Grain-boundary analysis indicates (partial) removal of an ultra-thin (1 nm), yttrium-rich grain boundary layer after deformation.\ud \ud Uniaxial pressure-assisted sintering techniques (=sinter-forging) provide the opportunity of large shear strains during densification. Sinter-forging experiments on zirconia-toughened alumina (15 wt% ZrO2/85 wt% Al2O3) resulted in a dense composite within 15 min at 1400 °C and 40 MPa, with effective shear strains up to 100%. Sinter-forging of Y-TZP and ZTA gives an increase in strength, reliability and fracture toughness. These improvements are caused by the large shear strains that result from the removal of processing flaws. Also, the number of microcraks at the grain boundaries and the interatomic spacing between the grains are reduced by the forging techniques, resulting in a strengthening of the grain boundaries if compared with pressureless sintering. K1C values of 10 MPa√m are obtained for Y-TZP, while no classical stress-induced phase transformation toughening is observed. Sinter-forged ZTA samples showed a better wear resistance than free sintered ones.\u

    Effects of a second phase on the tribological properties of Al2O3 and ZrO2 ceramics

    Get PDF
    The tribological properties of four different materials are investigated, tetragonal zirconia (Y-ZTP), Al2O3 dispersed in Y-TZP (ADZ), ZrO2 dispersed in Al2O3 (ZTA) and Al2O3 (with 300 ppm MgO). These materials are used as a cylinder sliding against a plate of Y-TZP (TZ-3Y)). Compared to Y-TZP, the wear resistance of ADZ composites is increased by a factor of 4¿10. At a contact pressure of 230 MPa, a wear transition for Y-TZP is observed from plastic deformation to microchipping and microfracture due to the high interfacial temperature (450°C¿550°C) generated by frictional heating. Because of the higher elastic modulus, hardness and fracture toughness at high temperature, ADZ composites show better wear resistance and a higher transition contact pressure (over 400 MPa) under the present conditions. For Al2O3, the transition from mild to severe wear occurs when the contact pressure is changed from 250 to 400 MPa. For ZTA ceramics, the wear behaviour does not change because of the presence of a compressive layer due to the zirconia phase transformation during sliding.\ud \ud In water the wear resistance for ADZ and ZY5 is almost two orders of magnitude higher than the results under dry conditions. Reduction of the interfacial temperature by using water and the formation of a hydroxide layer at the contact surface by the tribochemical reaction of water with the ceramic, as observed by XPS, gives a positive effect on wear resistance

    Production of defect-poor nanostructured ceramics of yttria-zirconia

    Get PDF
    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally crystallized ethanol-washed powder. The remaining porosity is caused by some residual defects which are present due to the irregular shape of the agglomerates and which cause improper die filling. A commercially available powder was also investigated. This powder consists of homogeneous porous, spherical, weak agglomerates. The resulting ceramic has a high density (≥ 99%) but cannot be obtained with ultra-fine grain size (minimum grain size is 0.3 μm). The air-crystallized ethanol-washed powder resulted, after sintering, in larger porosities. In this case the powder consists of weak and some strong agglomerates and a few defect clusters are found in the sintered ceramic which limit the maximum attainable density to 92%. The air-crystallized water-washed powder consists of agglomerates which are too strong to be fractured during compaction. The sintered ceramics contain a large amount of porosity (20%) which is attributed to the presence of inter-agglomerate pores.\u

    Friction and wear behaviour of ceramic-hardened steel couples under reciprocating sliding motion

    Get PDF
    The friction and wear behaviour of ZrO2-Y203, ZrO2-Y203-CeO2 and ZrO2-A1203 composite ceramics against hardened steel AISI-52100 were investigated using a pin on plate configuration under reciprocating motion. The reproducibility of the results was examined in this configuration. Wear characteristics were separated into system and material contributions. Under the conditions used, all the ceramic components exhibited rather low wear rates (less than 10-6mm3N-1m-1). The frictional behaviour of ceramic-metal couples depended on a metallic layer transferred from the steel plate to the ceramic pin. A relation was determined between surface hardness and friction of ceramic-metal pairs. It was shown that the affinity for the transfer of the metal towards ceramic surfaces depended on the physical properties of the materials. In the tribosystems investigated, the effect of the hardness of the ceramics on friction and wear behaviour is found to be more important than that of toughness of the ceramics

    Grain growth in ultrafine-grained Y-TZP ceramics

    Get PDF
    Grain growth in dense ultrafine-grained (120–600 nm) tetragonal ZrO2-Y2O3 ceramics is studied as a function of temperature. At all temperatures investigated both segregation and phase partitioning occur. It is argued that at temperatures ≤ 1150 °C grain growth is not significantly inhibited by solid solution drag or by phase partitioning. At higher temperatures the grain growth behaviour can be explained by the models of solid solution drag and/or phase partitioning depending on conditions.\u

    Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites

    Get PDF
    Yttria-stabilized cubic zirconia (YSZ)-palladium dual phase composites have been investigated. The percolative composite containing 40 vol% Pd (ZYPd40) showed a much larger oxygen permeability than that of the non-percolative composite containing 30 vol% Pd (ZYPd30). For a 2.0 mm thick percolative composite, an oxygen flux of 4.3 × 10−8 mol/cm2/s was measured at 1100 °C with oxygen partial pressures at the feed and permeate sides being 0.209 and 0.014 atm, respectively. This value is two orders of magnitude larger than that observed for a 2.0 mm thick non-percolative composite at the same temperature with the oxygen partial pressures at the feed and permeate sides being 0.209 and 1.5 × 10−4 atm, respectively. From the dependence of the oxygen permeation on the temperature and on the oxygen partial pressures, it was concluded that the transport of the oxygen ions through the YSZ phase in the percolative system was the rate limiting step
    • …
    corecore