257 research outputs found
The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus
We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold
degeneracy is realized by two inequivalent crystalline states with a four- and
two-fold degeneracy respectively. The fundamental quasihole and quasiparticle
excitations are domain walls between these vacua, and simple counting arguments
give a Hilbert space of dimension for holes and particles
at fixed positions and assign each a charge . This generalizes the
known properties of the hole excitations in the Pfaffian state as deduced using
conformal field theory techniques. Numerical calculations using a model
hamiltonian and a small number of particles supports the presence of a stable
phase with degenerate vacua and quarter charged domain walls also away from the
thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the
various domain walls.Comment: 4 pages, 1 figure. Published, minor change
Lithium Diffusion & Magnetism in Battery Cathode Material LixNi1/3Co1/3Mn1/3O2
We have studied low-temperature magnetic properties as well as
high-temperature lithium ion diffusion in the battery cathode materials
LixNi1/3Co1/3Mn1/3O2 by the use of muon spin rotation/relaxation. Our data
reveal that the samples enter into a 2D spin-glass state below TSG=12 K. We
further show that lithium diffusion channels become active for T>Tdiff=125 K
where the Li-ion hopping-rate [nu(T)] starts to increase exponentially.
Further, nu(T) is found to fit very well to an Arrhenius type equation and the
activation energy for the diffusion process is extracted as Ea=100 meV.Comment: Submitted to Journal of Physics: Conference Series (2014
A Look Inside HIV Resistance through Retroviral Protease Interaction Maps
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases
Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques
<p>Abstract</p> <p>Background</p> <p>Protein kinases play crucial roles in cell growth, differentiation, and apoptosis. Abnormal function of protein kinases can lead to many serious diseases, such as cancer. Kinase inhibitors have potential for treatment of these diseases. However, current inhibitors interact with a broad variety of kinases and interfere with multiple vital cellular processes, which causes toxic effects. Bioinformatics approaches that can predict inhibitor-kinase interactions from the chemical properties of the inhibitors and the kinase macromolecules might aid in design of more selective therapeutic agents, that show better efficacy and lower toxicity.</p> <p>Results</p> <p>We applied proteochemometric modelling to correlate the properties of 317 wild-type and mutated kinases and 38 inhibitors (12,046 inhibitor-kinase combinations) to the respective combination's interaction dissociation constant (K<sub>d</sub>). We compared six approaches for description of protein kinases and several linear and non-linear correlation methods. The best performing models encoded kinase sequences with amino acid physico-chemical z-scale descriptors and used support vector machines or partial least- squares projections to latent structures for the correlations. Modelling performance was estimated by double cross-validation. The best models showed high predictive ability; the squared correlation coefficient for new kinase-inhibitor pairs ranging P<sup>2 </sup>= 0.67-0.73; for new kinases it ranged P<sup>2</sup><sub>kin </sub>= 0.65-0.70. Models could also separate interacting from non-interacting inhibitor-kinase pairs with high sensitivity and specificity; the areas under the ROC curves ranging AUC = 0.92-0.93. We also investigated the relationship between the number of protein kinases in the dataset and the modelling results. Using only 10% of all data still a valid model was obtained with P<sup>2 </sup>= 0.47, P<sup>2</sup><sub>kin </sub>= 0.42 and AUC = 0.83.</p> <p>Conclusions</p> <p>Our results strongly support the applicability of proteochemometrics for kinome-wide interaction modelling. Proteochemometrics might be used to speed-up identification and optimization of protein kinase targeted and multi-targeted inhibitors.</p
Degeneracy of non-abelian quantum Hall states on the torus: domain walls and conformal field theory
We analyze the non-abelian Read-Rezayi quantum Hall states on the torus,
where it is natural to employ a mapping of the many-body problem onto a
one-dimensional lattice model. On the thin torus--the Tao-Thouless (TT)
limit--the interacting many-body problem is exactly solvable. The Read-Rezayi
states at filling are known to be exact ground states of a
local repulsive -body interaction, and in the TT limit this is manifested
in that all states in the ground state manifold have exactly particles on
any consecutive sites. For the two-body correlations of these
states also imply that there is no more than one particle on adjacent
sites. The fractionally charged quasiparticles and quasiholes appear as domain
walls between the ground states, and we show that the number of distinct domain
wall patterns gives rise to the nontrivial degeneracies, required by the
non-abelian statistics of these states. In the second part of the paper we
consider the quasihole degeneracies from a conformal field theory (CFT)
perspective, and show that the counting of the domain wall patterns maps one to
one on the CFT counting via the fusion rules. Moreover we extend the CFT
analysis to topologies of higher genus.Comment: 15 page
XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services
Background: Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results: We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion: XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics
An eScience-Bayes strategy for analyzing omics data
<p>Abstract</p> <p>Background</p> <p>The omics fields promise to revolutionize our understanding of biology and biomedicine. However, their potential is compromised by the challenge to analyze the huge datasets produced. Analysis of omics data is plagued by the curse of dimensionality, resulting in imprecise estimates of model parameters and performance. Moreover, the integration of omics data with other data sources is difficult to shoehorn into classical statistical models. This has resulted in <it>ad hoc </it>approaches to address specific problems.</p> <p>Results</p> <p>We present a general approach to omics data analysis that alleviates these problems. By combining eScience and Bayesian methods, we retrieve scientific information and data from multiple sources and coherently incorporate them into large models. These models improve the accuracy of predictions and offer new insights into the underlying mechanisms. This "eScience-Bayes" approach is demonstrated in two proof-of-principle applications, one for breast cancer prognosis prediction from transcriptomic data and one for protein-protein interaction studies based on proteomic data.</p> <p>Conclusions</p> <p>Bayesian statistics provide the flexibility to tailor statistical models to the complex data structures in omics biology as well as permitting coherent integration of multiple data sources. However, Bayesian methods are in general computationally demanding and require specification of possibly thousands of prior distributions. eScience can help us overcome these difficulties. The eScience-Bayes thus approach permits us to fully leverage on the advantages of Bayesian methods, resulting in models with improved predictive performance that gives more information about the underlying biological system.</p
Impedance analysis of secondary phases in a Co-implanted ZnO single crystal
published_or_final_versio
Exploring the development of a cultural care framework for European caring science
The aim of this paper is to discuss the development of a cultural care framework that seeks to inform and embrace the philosophical ideals of caring science. Following a review of the literature that identified a lack of evidence of an explicit relationship between caring science and cultural care, a number of well-established transcultural care frameworks were reviewed. Our purpose was to select one that would resonate with underpinning philosophical values of caring science and that drew on criteria generated by the European Academy of Caring Science members. A modified framework based on the work of Giger and Davidhizar was developed as it embraced many of the values such as humanism that are core to caring science practice. The proposed caring science framework integrates determinants of cultural lifeworld-led care and seeks to provide clear directions for humanizing the care of individuals. The framework is offered to open up debate and act as a platform for further academic enquiry
- …