1,774 research outputs found
Hyperobjects: Philosophy and Ecology After the End of the World by Timothy Morton
Welling reviews Timothy Morton\u27s book Hyperobjects: Philosophy and Ecology after the End of the World (Minneapolis: U of Minnesota P, 2013)
Defending Truths, Restoring Worlds
The post in post-truth is premature, and also assigns too much importance to Brexit and the victory of Donald Trump in the US. Worst of all, it can foster the impression that people like Brexit voters and Trump supporters are irredeemably exiled in alternative fact bubbles beyond the reach of science, rational thought, and common decency. We have to find ways to work productively with these kinds of citizens, instead of merely condemning them, if we want to trigger both a worldwide alternative energy revolution and the revolution in politics and economics that a truly just and sustainable energy transition demands
Culture Jamming: Activism and the Art of Cultural Resistance by Marilyn DeLaure and Moritz Fink
Review of Marilyn DeLaure and Moritz Fink\u27s Culture Jamming: Activism and the Art of Cultural Resistance
Living Oil: Petroleum Culture in the American Century by Stephanie LeMenager
Bart H. Welling reviews Living Oil: Petroleum Culture in the American Cenutry by Stephanie LeMenager
The 2+1 Kepler Problem and Its Quantization
We study a system of two pointlike particles coupled to three dimensional
Einstein gravity. The reduced phase space can be considered as a deformed
version of the phase space of two special-relativistic point particles in the
centre of mass frame. When the system is quantized, we find some possibly
general effects of quantum gravity, such as a minimal distances and a foaminess
of the spacetime at the order of the Planck length. We also obtain a
quantization of geometry, which restricts the possible asymptotic geometries of
the universe.Comment: 59 pages, LaTeX2e, 9 eps figure
The Torus Universe in the Polygon Approach to 2+1-Dimensional Gravity
In this paper we describe the matter-free toroidal spacetime in 't Hooft's
polygon approach to 2+1-dimensional gravity (i.e. we consider the case without
any particles present). Contrary to earlier results in the literature we find
that it is not possible to describe the torus by just one polygon but we need
at least two polygons. We also show that the constraint algebra of the polygons
closes.Comment: 18 pages Latex, 13 eps-figure
Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity
We study the phase space structure and the quantization of a pointlike
particle in 2+1 dimensional gravity. By adding boundary terms to the first
order Einstein Hilbert action, and removing all redundant gauge degrees of
freedom, we arrive at a reduced action for a gravitating particle in 2+1
dimensions, which is invariant under Lorentz transformations and a group of
generalized translations. The momentum space of the particle turns out to be
the group manifold SL(2). Its position coordinates have non-vanishing Poisson
brackets, resulting in a non-commutative quantum spacetime. We use the
representation theory of SL(2) to investigate its structure. We find a
discretization of time, and some semi-discrete structure of space. An
uncertainty relation forbids a fully localized particle. The quantum dynamics
is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory
improve
Panel Discussion - Management of Eurasian watermilfoil in the United States using native insects: State regulatory and management issues
While researchers have evaluated the potential of native
insect herbivores to manage nonindigenous aquatic plant
species such as Eurasian watermilfoil (
Myriophyllum spicatum
L.), the practical matters of regulatory compliance and implementation
have been neglected. A panel of aquatic nuisance
species program managers from three state natural
resource management agencies (Minnesota, Vermont and
Washington) discussed their regulatory and policy concerns.
In addition, one ecological consultant attempting to market
one of the native insects to manage Eurasian watermilfoil
added his perspective on the special challenges of distributing
a native biological control agent for management of Eurasian
watermilfoil
Graph Refinement based Airway Extraction using Mean-Field Networks and Graph Neural Networks
Graph refinement, or the task of obtaining subgraphs of interest from
over-complete graphs, can have many varied applications. In this work, we
extract trees or collection of sub-trees from image data by, first deriving a
graph-based representation of the volumetric data and then, posing the tree
extraction as a graph refinement task. We present two methods to perform graph
refinement. First, we use mean-field approximation (MFA) to approximate the
posterior density over the subgraphs from which the optimal subgraph of
interest can be estimated. Mean field networks (MFNs) are used for inference
based on the interpretation that iterations of MFA can be seen as feed-forward
operations in a neural network. This allows us to learn the model parameters
using gradient descent. Second, we present a supervised learning approach using
graph neural networks (GNNs) which can be seen as generalisations of MFNs.
Subgraphs are obtained by training a GNN-based graph refinement model to
directly predict edge probabilities. We discuss connections between the two
classes of methods and compare them for the task of extracting airways from 3D,
low-dose, chest CT data. We show that both the MFN and GNN models show
significant improvement when compared to one baseline method, that is similar
to a top performing method in the EXACT'09 Challenge, and a 3D U-Net based
airway segmentation model, in detecting more branches with fewer false
positives.Comment: Accepted for publication at Medical Image Analysis. 14 page
- …
