216 research outputs found

    Second moment of the Husimi distribution as a measure of complexity of quantum states

    Full text link
    We propose the second moment of the Husimi distribution as a measure of complexity of quantum states. The inverse of this quantity represents the effective volume in phase space occupied by the Husimi distribution, and has a good correspondence with chaoticity of classical system. Its properties are similar to the classical entropy proposed by Wehrl, but it is much easier to calculate numerically. We calculate this quantity in the quartic oscillator model, and show that it works well as a measure of chaoticity of quantum states.Comment: 25 pages, 10 figures. to appear in PR

    Quantum Copying: Beyond the No-Cloning Theorem

    Get PDF
    We analyze to what extent it is possible to copy arbitrary states of a two-level quantum system. We show that there exists a "universal quantum copying machine", which approximately copies quantum mechanical states in such a way that the quality of its output does not depend on the input. We also examine a machine which combines a unitary transformation with a selective measurement to produce good copies of states in a neighborhood of a particular state. We discuss the problem of measurement of the output states.Comment: RevTex, 26 pages, to appear in Physical Review

    Probability distributions consistent with a mixed state

    Get PDF
    A density matrix ρ\rho may be represented in many different ways as a mixture of pure states, \rho = \sum_i p_i |\psi_i\ra \la \psi_i|. This paper characterizes the class of probability distributions (pi)(p_i) that may appear in such a decomposition, for a fixed density matrix ρ\rho. Several illustrative applications of this result to quantum mechanics and quantum information theory are given.Comment: 6 pages, submitted to Physical Review

    Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    Full text link
    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb in 1978 who also extended the conjecture to Bloch SU(2) spin-coherent states for every angular momentum JJ. This conjecture is proved here. We also recall our 1991 extension of the Wehrl map to a quantum channel from JJ to K=J+1/2,J+1,...K=J+1/2, J+1, ..., with K=K=\infty corresponding to the Wehrl map to classical densities. For each JJ and J<KJ<K\leq \infty we show that the minimal output entropy for these channels occurs for a JJ coherent state. We also show that coherent states both Glauber and Bloch minimize any concave functional, not just entropy.Comment: Version 2 only minor change

    Negative entropy and information in quantum mechanics

    Get PDF
    A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles suggests a consistent interpretation of quantum informational processes.Comment: 4 pages RevTeX, 2 figures. Expanded discussion of quantum teleportation and superdense coding, and minor corrections. To appear in Phys. Rev. Let

    Accessibility of physical states and non-uniqueness of entanglement measure

    Full text link
    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility.Comment: 8 pages, 1 figure. v2: main result unchanged but presentation extensively changed. v3: figure added, minor correction

    A classical analogue of entanglement

    Get PDF
    We show that quantum entanglement has a very close classical analogue, namely secret classical correlations. The fundamental analogy stems from the behavior of quantum entanglement under local operations and classical communication and the behavior of secret correlations under local operations and public communication. A large number of derived analogies follow. In particular teleportation is analogous to the one-time-pad, the concept of ``pure state'' exists in the classical domain, entanglement concentration and dilution are essentially classical secrecy protocols, and single copy entanglement manipulations have such a close classical analog that the majorization results are reproduced in the classical setting. This analogy allows one to import questions from the quantum domain into the classical one, and vice-versa, helping to get a better understanding of both. Also, by identifying classical aspects of quantum entanglement it allows one to identify those aspects of entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update

    Distinguishability of States and von Neumann Entropy

    Get PDF
    Consider an ensemble of pure quantum states |\psi_j>, j=1,...,n taken with prior probabilities p_j respectively. We show that it is possible to increase all of the pairwise overlaps || i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same), in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S. We show that this phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions. It is known that the von Neumann entropy characterises the classical and quantum information capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguishability of the signal states. Hence our result shows that the notion of distinguishability within an ensemble is a global property that cannot be reduced to considering distinguishability of each constituent pair of states.Comment: 18 pages, Latex, 2 figure

    Universal simulation of Hamiltonian dynamics for qudits

    Get PDF
    What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd et al. (quant-ph/0106064) provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.Comment: 13 pages, an error in the "Pauli-Euclid-Gottesman Lemma" fixed, main results unchange

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form
    corecore