351 research outputs found

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    In-plane magnetic reorientation in coupled ferro- and antiferromagnetic thin films

    Full text link
    By studying coupled ferro- (FM) and antiferromagnetic (AFM) thin film systems, we obtain an in-plane magnetic reorientation as a function of temperature and FM film thickness. The interlayer exchange coupling causes a uniaxial anisotropy, which may compete with the intrinsic anisotropy of the FM film. Depending on the latter the total in-plane anisotropy of the FM film is either enhanced or reduced. Eventually a change of sign occurs, resulting in an in-plane magnetic reorientation between a collinear and an orthogonal magnetic arrangement of the two subsystems. A canted magnetic arrangement may occur, mediating between these two extremes. By measuring the anisotropy below and above the N\'eel temperature the interlayer exchange coupling can be determined. The calculations have been performed with a Heisenberg-like Hamiltonian by application of a two-spin mean-field theory.Comment: 4 pages, 4 figure

    A study of low-energy transfer orbits to the Moon: towards an operational optimization technique

    Full text link
    In the Earth-Moon system, low-energy orbits are transfer trajectories from the earth to a circumlunar orbit that require less propellant consumption when compared to the traditional methods. In this work we use a Monte Carlo approach to study a great number of such transfer orbits over a wide range of initial conditions. We make statistical and operational considerations on the resulting data, leading to the description of a reliable way of finding "optimal" mission orbits with the tools of multi-objective optimization

    Spin Reorientations Induced by Morphology Changes in Fe/Ag(001)

    Full text link
    By means of magneto-optical Kerr effect we observe spin reorientations from in-plane to out-of-plane and vice versa upon annealing thin Fe films on Ag(001) at increasing temperatures. Scanning tunneling microscopy images of the different Fe films are used to quantify the surface roughness. The observed spin reorientations can be explained with the experimentally acquired roughness parameters by taking into account the effect of roughness on both the magnetic dipolar and the magnetocrystalline anisotropy.Comment: 4 pages with 3 EPS figure

    Exchange Anisotropy in Epitaxial and Polycrystalline NiO/NiFe Bilayers

    Full text link
    (001) oriented NiO/NiFe bilayers were grown on single crystal MgO (001) substrates by ion beam sputtering in order to determine the effect that the crystalline orientation of the NiO antiferromagnetic layer has on the magnetization curve of the NiFe ferromagnetic layer. Simple models predict no exchange anisotropy for the (001)-oriented surface, which in its bulk termination is magnetically compensated. Nonetheless exchange anisotropy is present in the epitaxial films, although it is approximately half as large as in polycrystalline films that were grown simultaneously. Experiments show that differences in exchange field and coercivity between polycrystalline and epitaxial NiFe/NiO bilayers couples arise due to variations in induced surface anisotropy and not from differences in the degree of compensation of the terminating NiO plane. Implications of these observations for models of induced exchange anisotropy in NiO/NiFe bilayer couples will be discussed.Comment: 23 pages in RevTex format, submitted to Phys Rev B

    Anderson-Mott transition as a quantum glass problem

    Full text link
    We combine a recent mapping of the Anderson-Mott metal-insulator transition on a random-field problem with scaling concepts for random-field magnets to argue that disordered electrons near an Anderson-Mott transition show glass-like behavior. We first discuss attempts to interpret experimental results in terms of a conventional scaling picture, and argue that some of the difficulties encountered point towards a glassy nature of the electrons. We then develop a general scaling theory for a quantum glass, and discuss critical properties of both thermodynamic and transport variables in terms of it. Our most important conclusions are that for a correct interpretation of experiments one must distinguish between self-averaging and non-self averaging observables, and that dynamical or temperature scaling is not of power-law type but rather activated, i.e. given by a generalized Vogel-Fulcher law. Recent mutually contradicting experimental results on Si:P are discussed in the light of this, and new experiments are proposed to test the predictions of our quantum glass scaling theory.Comment: 25pp, REVTeX, 5 ps figs, final version as publishe

    An Analytical Approach to Analyzing Spacecraft Formation-Flying Motion

    Full text link
    • 

    corecore