542 research outputs found
Comparative study of excitonic structures and luminescence properties of Bi4Ge3O12 and Bi12GeO20
Published in physica status solidi (b), Vol. 245, No. 12, pp2733-2736, 2008.Bi12GeO20 crystals have been performed, in addition to relativistic molecular orbital calculations. Both materials consist of the same elements but form different crystal structures. Based on the obtained results, the excitonic reflection structures and luminescence properties of Bi4Ge3O12 and Bi12GeO20 are discussed in comparison with each other.Bookphysica status solidi (b). 245(12):2733-2736 (2008)journal articl
Curve crossing in linear potential grids: the quasidegeneracy approximation
The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S.
Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to
evaluate transition amplitudes for the problem of curve crossing in linear
potential grids involving two sets of parallel potentials. The approximation
describes phenomena, such as counterintuitive transitions and saturation
(incomplete population transfer), not predictable by the assumption of
independent crossings. Also, a new kind of oscillations due to quantum
interference (different from the well-known St\"uckelberg oscillations) is
disclosed, and its nature discussed. The approximation can find applications in
many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig,
submitted to Physical Review
Electrical Conductivity of Fermi Liquids. I. Many-body Effect on the Drude Weight
On the basis of the Fermi liquid theory, we investigate the many-body effect
on the Drude weight. In a lattice system, the Drude weight is modified by
electron-electron interaction due to Umklapp processes, while it is not
renormalized in a Galilean invariant system. This is explained by showing that
the effective mass for is defined through the current, not
velocity, of quasiparticle. It is shown that the inequality is required
for the stability against the uniform shift of the Fermi surface. The result of
perturbation theory applied for the Hubbard model indicates that as a
function of the density is qualitatively modified around half filling
by Umklapp processes.Comment: 20 pages, 2 figures; J. Phys. Soc. Jpn. Vol.67, No.
IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes
BACKGROUND: The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. CONCLUSION/SIGNIFICANCE: These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy
Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study
The finite-temperature density-matrix renormalization-group method is applied
to the one-dimensional Kondo lattice model near half filling to study its
thermodynamics. The spin and charge susceptibilities and entropy are calculated
down to T=0.03t. We find two crossover temperatures near half filling. The
higher crossover temperature continuously connects to the spin gap at half
filling, and the susceptibilities are suppressed around this temperature. At
low temperatures, the susceptibilities increase again with decreasing
temperature when doping is finite. We confirm that they finally approach to the
values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several
parameters. The crossover temperature to the TL liquid is a new energy scale
determined by gapless excitations of the TL liquid. The transition from the
metallic phase to the insulating phase is accompanied by the vanishing of the
lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe
Perturbation study on the spin and charge susceptibilities of the two-dimensional Hubbard model
We investigate the spin and charge susceptibilities of the two-dimensional
Hubbard model based upon the perturbative calculation in the strength of
correlation . For comparable to a bare bandwidth, the charge
susceptibility decreases near the half-filling as hole-doping approaches zero.
This behavior suggesting the precursor of the Mott-Hubbard gap formation cannot
be obtained without the vertex corrections beyond the random phase
approximation. In the low-temperature region, the spin susceptibility deviates
from the Curie-Weiss-like law and finally turns to decrease with the decrease
of temperature. This spin-gap-like behavior is originating from the van Hove
singularity in the density of states.Comment: Revtex file + 11 figures, to appear in Phys. Rev.
Nearly universal crossing point of the specific heat curves of Hubbard models
A nearly universal feature of the specific heat curves C(T,U) vs. T for
different U of a general class of Hubbard models is observed. That is, the
value C_+ of the specific heat curves at their high-temperature crossing point
T_+ is almost independent of lattice structure and spatial dimension d, with
C_+/k_B \approx 0.34. This surprising feature is explained within second order
perturbation theory in U by identifying two small parameters controlling the
value of C_+: the integral over the deviation of the density of states
N(\epsilon) from a constant value, characterized by \delta N=\int d\epsilon
|N(\epsilon)-1/2|, and the inverse dimension, 1/d.Comment: Revtex, 9 pages, 6 figure
Few-electron molecular states and their transitions in a single InAs quantum dot molecule
We study electronic configurations in a single pair of vertically coupled
self-assembled InAs quantum dots, holding just a few electrons. By comparing
the experimental data of non-linear single-electron transport spectra in a
magnetic field with many-body calculations, we identify the spin and orbital
configurations to confirm the formation of molecular states by filling both the
quantum mechanically coupled symmetric and anti-symmetric states. Filling of
the anti-symmetric states is less favored with increasing magnetic field, and
this leads to various magnetic field induced transitions in the molecular
states.Comment: 14 pages, 3 figures, Accepted for publication in Phys. Rev. Let
- …