8 research outputs found

    Effects of Unilateral Compound-Eye Removal on the Photoperiodic Responses of Nymphal Development in the Cricket Modicogryllus siamensis

    Get PDF
    The cricket, Modicogryllus siamensis, shows clear photoperiodic responses at 25 degrees C in nymphal development. Under long-day conditions (LD16:8), nymphs became adults about 50 days after hatching, while under short-day conditions (LD8:16) the duration of nymphal stage extended to more than 130 days. Under constant dark conditions, two developmental patterns were observed: about 60% of crickets became adults slightly slower than under the long-day conditions, and the rest at later than 100 days after hatching, like those under the short-day conditions. When the compound eye was unilaterally removed on the 2nd day of hatching, an increase of molting and an extension of the nymphal period were observed under the long-day conditions, while under the short-day conditions, some crickets developed faster and others slower than intact crickets. These results suggest that this cricket receives photoperiodic information through the compound eye, that a pair of the compound eyes is required for a complete photoperiodic response, and that interaction between bilateral circadian clocks may be also involved in the response

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae

    Get PDF
    Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day
    corecore