411 research outputs found

    Long-time behavior of an angiogenesis model with flux at the tumor boundary

    Get PDF
    This paper deals with a nonlinear system of partial differential equations modeling a simplified tumor-induced angiogenesis taking into account only the interplay between tumor angiogenic factors and endothelial cells. Considered model assumes a nonlinear flux at the tumor boundary and a nonlinear chemotactic response. It is proved that the choice of some key parameters influences the long-time behaviour of the system. More precisely, we show the convergence of solutions to different semi-trivial stationary states for different range of parameters.Comment: 17 page

    Clinical Impact of Down-Regulated Plasma miR-92a Levels in Non-Hodgkin's Lymphoma

    Get PDF
    Background: We undertook a study to evaluate the clinical relevance of miR-92a in plasma obtained from non-Hodgkin’s lymphoma (NHL) patients, because the miR-17-92 polycistronic miRNA cluster plays a crucial role in lymphomagenesis and affects neo-angiogenesis. Methodology/Principal Findings: Plasma miR-92a values in NHL were extremely low (,5%), compared with healthy subjects (P,.0001), irrespective of lymphoma sub-type. The very low plasma level of miR-92a increased in the complete response (CR) phase but did not reach the normal range, and the plasma level was lower again in the relapse phase. Patients in CR or CR unconfirmed with a plasma miR-92a level of less than the cut-off level showed a significantly high relapse rate compared with patients with normalized plasma miR-92a level. Conclusions/Significance: The current results therefore indicate that the plasma miR-92a value could be a novel biomarke

    Comprehensive analysis of liver and blood miRNA in precancerous conditions

    Get PDF
    Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6–12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker

    Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells

    Get PDF
    Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance

    Brane-bulk energy exchange : a model with the present universe as a global attractor

    Full text link
    The role of brane-bulk energy exchange and of an induced gravity term on a single braneworld of negative tension and vanishing effective cosmological constant is studied. It is shown that for the physically interesting cases of dust and radiation a unique global attractor which can realize our present universe (accelerating and 0<Omega_{m0}<1) exists for a wide range of the parameters of the model. For Omega_{m0}=0.3, independently of the other parameters, the model predicts that the equation of state for the dark energy today is w_{DE,0}=-1.4, while Omega_{m0}=0.03 leads to w_{DE,0}=-1.03. In addition, during its evolution, w_{DE} crosses the w_{DE}=-1 line to smaller values.Comment: 8 pages, 2 figures, RevTex; references added, to appear in JHE

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA

    Multinucleation followed by an acytokinetic cell division in myxofibrosarcoma with giant cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multinucleated cells are frequently seen in association with a malignant neoplasm. Some of these multinucleated cells are considered to be neoplastic. The mechanism of neoplastic multinucleation remains unknown, but is considered to be induced by either cell-cell fusion or acytokinetic cell division. Myxofibrosarcoma consists of spindled and pleomorphic tumor cells and bizarre multinucleated giant cells. Some of these multinucleated cells are considered to be neoplastic.</p> <p>Methods</p> <p>We studied the mitotic activity of the multinucleated cells by Ki-67 immunohistochemistry, and the dynamics and differentiation by live-cell video microscopy in the two myxofibrosarcoma cell lines to determine whether the mechanism of multinucleation is cell-cell fusion or acytokinetic cell division</p> <p>Results</p> <p>A Ki-67 immunohistochemical analysis revealed a high positive rate of multinucleated cells, as well as mononuclear cells, and mitotic ability was shown in the multinucleated cells. In live-cell video microscopy, most of the multinucleated cells were induced via the process of acytokinetic cell division.</p> <p>Conclusion</p> <p>The current study indicates that a vulnerability of the cytoskeleton components, such as the contractile ring, causes multinucleation to occur from the telophase to the cytokinesis of the cell cycle.</p
    corecore