22 research outputs found

    Prevalence of adrenal masses in Japanese patients with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To date, there have been no reports on the prevalence of adrenal masses in type 2 diabetic patients. The present study aimed to evaluate the prevalence of adrenal incidentaloma in type 2 diabetic patients in Japan.</p> <p>Subjects</p> <p>We retrospectively evaluated the presence of adrenal masses using abdominal CT scans in 304 type 2 diabetic patients. In those with adrenal masses, we examined the hormone production capacity of the adrenal mass.</p> <p>Results</p> <p>Fourteen patients (4.6%) had an adrenal mass. Hormonal analysis identified one case as having subclinical Cushing's syndrome, two with primary aldosteronism. Eleven cases had non-functioning masses.</p> <p>Discussion</p> <p>The reported prevalence of adrenal incidentaloma in normal subjects is 0.6-4.0% in abdominal CT scan series. Our results show a relatively high prevalence of adrenal tumors in diabetic patients. On the other hand, the frequency of functional adenoma in diabetic patients is 21.4%, which is similar to that of normal subjects.</p> <p>Conclusion</p> <p>Although further studies are needed to evaluate the prevalence of adrenal tumors in diabetic patients, our data suggest that evaluation of the presence of adrenal masses may be needed in patients with type 2 diabetes mellitus.</p

    Geographical Heterogeneity between Far Eastern and Western Countries in Prevalence of the Virulence Plasmid, the Superantigen Yersinia pseudotuberculosis-Derived Mitogen, and the High-Pathogenicity Island among Yersinia pseudotuberculosis Strains

    No full text
    Yersinia pseudotuberculosis produces novel superantigenic toxins designated YPMa (Y. pseudotuberculosis-derived mitogen), YPMb, and YPMc and has a pathogenicity island termed HPI (high-pathogenicity island) and R-HPI (the right-hand part of the HPI with truncation in its left-hand part) on the chromosome. Analysis of the distribution of these virulence factors allowed for differentiation of species Y. pseudotuberculosis into six subgroups, thus reflecting the geographical spread of two main clones: the YPMa(+) HPI(−) Far Eastern systemic pathogenic type belonging to serotypes O1b, -2a, -2b, -2c, -3, -4a, -4b, -5a, -5b, -6, -10, and UT (untypeable) and the YPMs(−) HPI(+) European gastroenteric pathogenic type belonging to serotypes O1a and -1b. The YPMa(+) HPI(+) pathogenic type belonging to serotypes O1b, -3, -5a, -5b, and UT and the YPMb(+) HPI(−) nonpathogenic type belonging to non-melibiose-fermenting serotypes O1b, -5a, -5b, -6, -7, -9, -10, -11, and -12 were prevalent in the Far East. The YPMc(+) R-HPI(+) European low-pathogenicity type belonging to non-melibiose-fermenting serotype O3 and the YPMs(−) HPI(−) pathogenic type belonging to 15 serotypes were found to be prevalent all over the world. This new information is useful for a better understanding of the evolution and spread of Y. pseudotuberculosis
    corecore