1,331 research outputs found

    High-resolution Compton spectroscopy using X-ray microcalorimeters

    Full text link
    X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic X-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy X-ray light source facility using an X-ray microcalorimeter detector. Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles shows high-sensitivity to the low-Z elements and oxidation states. The lineshape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is limited by the resolution of the energy-resolving semiconductor detector. We have characterized an X-ray transition-edge sensor microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source (APS) with a double crystal monochromator providing monochromatic photon energies near 27.5 keV. The momentum resolution below 0.16 atomic units was measured yielding an improvement of more than a factor of 7 over a state-of-the-art silicon drift detector for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an X-ray microcalorimeter detector compared to smeared and broadened lineshapes observed when using a silicon drift detector. High-resolution Compton scattering using the energy-resolving detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.Comment: The following article has been submitted to Applied Physics Letter

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore